

August 9, 2006

Mr. Chuck Zimmerman Brown and Caldwell 3264 Goni Road, Suite 153 Carson City, NV 89706

Dear Mr. Zimmerman:

Enclosed is the quality assurance review of the analytical data for the analyses of the 15 air filter samples that were collected on June 10, 2006, in association with the ARCO Yerington Mine Site (Event 84). The samples were collectively analyzed for ICP metals, ICP/MS metals, and mercury.

Based on this quality assurance review, several ICP/MS manganese results and all mercury environmental sample results were qualified as "not-detected" due to blank contamination. In addition, several ICP, ICP/MS, and mercury results were qualified as estimated due to positive results reported between the method detection limit and reporting limit.

If you have any questions or comments, please do not hesitate to call.

Sincerely,

Konstadina Vlahogiani, M.S. Senior Quality Assurance Chemist III/

KUlahogiane

Project Manager

KV/RJV:hm Enc.

cc: Mr. Greg Cole – Brown and Caldwell

Concurred by:

Principal

Rock J. Vitale, CEAC, CPC

Technical Director of Chemistry/

1140 Valley Forge Road • P.O. Box 810 • Valley Forge, PA 19482-0810

QUALITY ASSURANCE REVIEW OF THE AIR FILTER SAMPLES COLLECTED AT THE ARCO YERINGTON MINE SITE ON JUNE 10, 2006 (EVENT 84)

August 9, 2006

Prepared for:

ATLANTIC RICHFIELD COMPANY

28100 Torch Parkway Warrenville, IL 60555

Prepared by:

ENVIRONMENTAL STANDARDS, INC.

1140 Valley Forge Road P.O. Box 810 Valley Forge, PA 19482-0810

Issued to:

BROWN AND CALDWELL

3264 Goni Road, Suite 153 Carson City, NV 89706

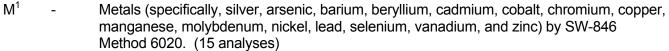
TABLE OF CONTENTS

1.0 Introduction

- 2.0 Findings
 - A. ICP Metals Analysis
 - B. ICP/MS Metals Analysis
 - C. Mercury Analysis
- 3.0 Qualifier Summary Tables
 - A. ICP Metals Analysis
 - B. ICP/MS Metals Analysis
 - C. Mercury Analysis
- 4.0 Overall Assessment
- 5.0 Inorganic Data Qualifiers and Valid Reason Codes
- 6.0 Signatures
- 7.0 Analytical Results
- 8.0 Supporting Documentation

1.0 Introduction

This quality assurance (QA) review is based upon a rigorous examination of all data generated from the analyses of the 15 air filter samples that were collected by Brown and Caldwell on June 10, 2006, in association with the ARCO Yerington Mine Site (Event 84). The samples included in this QA review are specified on Table 1.


This review has been performed with guidance from the "National Functional Guidelines for Inorganic Data Review" (US EPA, February 1994). The aforementioned document has been used to aid the data reviewer in the interpretation of the quality control (QC) analysis results and in the overall evaluation of the sample data deliverables. It should be noted, however, that results affected by blank contamination will be designated with a "UJ" qualifier (not the "U" qualifier typically used when following the National Functional Guidelines) in order to be consistent with historical project validation protocols and the current project database.

The reported analytical results are presented as a summary of the data in Section 2. Data were examined to determine the usability of the analytical results and the compliance relative to the requirements specified in the published analytical methods, the Quality Assurance Project Plan (QAPjP) for the Atlantic Richfield Company Yerington Mine Site (September 2003), and the Technical Requirements For Environmental Laboratory Analytical Services BP Global Contract Lab Network (GCLN) (5/22/02, Revision 08). Qualifier codes have been placed next to results to enable the data user to quickly assess the qualitative and/or quantitative reliability of any result. This critical QA review identifies data quality issues for specific samples and specific evaluation criteria. The data qualifications allow the data's end-user to best understand the usability of the analytical results. Data not qualified in this report should be considered valid based on the QC criteria that have been reviewed. Details of this QA review are presented in Section 1 of this report. This report was prepared to provide a critical review of the laboratory analyses and reported analytical results. Rigorous QA reviews of laboratory-generated data routinely identify various problems associated with analytical measurements, even from the most experienced and capable laboratories.

TABLE 1
SAMPLES INCLUDED IN THIS QUALITY ASSURANCE REVIEW

Field Sample Identification	Laboratory Sample Identification	Report Number	Matrix	Date Sample Collected	Parameters Examined
P-0668	G6F190128-001	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
P-0669	G6F190128-002	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
P-0670	G6F190128-003	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
P-0671	G6F190128-004	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
P-0672	G6F190128-005	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
P-0673	G6F190128-006	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
P-0674 (Field Duplicate of P-0668)	G6F190128-007	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
000494	G6F190128-008	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
000495	G6F190128-009	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
000496	G6F190128-010	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
000497	G6F190128-011	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
000498	G6F190128-012	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
000499	G6F190128-013	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
000500 (Trip Blank)	G6F190128-014	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg
000501 (Field Blank)	G6F190128-015	G6F190128	Filter	6/10/06	M ¹ , M ² , Hg

NOTES:

M² - Metals (specifically, aluminum, calcium, iron, magnesium, and sodium) by SW-846 Method 6010B. (15 analyses)

Hg - Mercury by SW-846 Method 7471A. (15 analyses)

2.0 Findings

Complete support documentation for this inorganic QA review is presented in Section 8.0 of this report. The cover sheet for this section is a checklist of all QA procedures required by the protocols and examined in this data review.

A. ICP Metals Analysis

Fifteen samples were analyzed for ICP metals (specifically, aluminum, calcium, iron, magnesium, and sodium) by SW-846 Method 6010B. The findings offered in this report for this fraction are based on the items on the following table.

		Acceptable With	Acceptable With	Not
Item Reviewed	Acceptable	Discussion	Qualification	Acceptable
Holding Times				
Sample Condition Upon Receipt				
Blank Analysis Results				
LCS Recoveries				
Detection Limits/Sensitivity				
Calibrations				
ICP Interference Check Samples				
PQL Standard Recoveries				
Field Duplicate Precision				
Post-Digestion Spike	$\sqrt{}$			
Serial Dilution Precision				
Analytical Sequence				
Sample Preparation				
Quantitation of Results			V	
A Critical Evaluation of				
Instrumental Raw Data				

<u>Quantitation of Results:</u> All positive results reported at concentrations greater than the method detection limit (MDL) but less than the reporting limit (RL) were qualified as estimated and have been flagged "J" on the data tables.

B. ICP/MS Metals Analysis

Fifteen samples were analyzed for ICP/MS metals (specifically, silver, arsenic, barium, beryllium, cadmium, cobalt, chromium, copper, manganese, molybdenum, nickel, lead, selenium, vanadium, and zinc) by SW-846 Method 6020. The findings offered in this report for this fraction are based on the items on the following table.

		Acceptable With	Acceptable With	Not
Item Reviewed	Acceptable	Discussion	Qualification	Acceptable
Holding Times	V			
Sample Condition Upon Receipt	V			
Blank Analysis Results			$\sqrt{}$	
LCS Recoveries				
Field Duplicate Precision	V			
Post-Digestion Spike				

		Acceptable With	Acceptable With	Not
Item Reviewed	Acceptable	Discussion	Qualification	Acceptable
Serial Dilution Precision	V			
Internal Standard Recoveries	V			
Detection Limits/Sensitivity	$\sqrt{}$			
Calibrations	V			
ICP/MS Interference Check Samples	V			
Analytical Sequence				
Sample Preparation				
Quantitation of Positive Results			$\sqrt{}$	
A Critical Evaluation of				
Instrumental Raw Data				

<u>Blank Analysis Results:</u> Manganese was observed to be present in the laboratory filter blank associated with the project samples. The reported positive results for manganese in samples P-0668, P-0669, P-0670, P-0672, P-0673, and P-0674 should be considered "not-detected" and have been flagged "UJ" on the data tables. It should be noted that dilution factors and sample volumes were taken into account when evaluating blank contamination.

<u>Quantitation of Positive Results:</u> All positive results reported at concentrations greater than the MDL but less than the RL were qualified as estimated and have been flagged "J" on the data tables.

C. Mercury Analysis

Fifteen samples were analyzed for mercury by SW-846 Method 7471A. The findings offered in this report for this fraction are based on the items on the following table.

Item Reviewed	Acceptable	Acceptable With Discussion	Acceptable With Qualification	Not Acceptable
Holding Times	√			
Sample Condition Upon Receipt				
Blank Analysis Results			$\sqrt{}$	
LCS Recoveries				
Detection Limits/Sensitivity				
Calibrations				
Field Duplicate Precision				
Analytical Sequence				
Sample Preparation				
Quantitation of Positive Results			V	
A Critical Evaluation of	V			
Instrumental Raw Data				

<u>Blank Analysis Results:</u> Mercury was observed to be present in the trip and field blanks associated with the project samples. The reported positive results for mercury in samples P-0668, P-0669, P-0670, P-0671, P-0672, P-0673, P-0674, 000494, 000495, 000496, 000497, 000498, and 000499 should be considered "not-detected" and have been flagged "UJ" on the data tables. It should be noted that dilution factors and sample volumes were taken into account when evaluating blank contamination.

<u>Quantitation of Positive Results:</u> All positive results reported at concentrations greater than the MDL but less than the RL were qualified as estimated and have been flagged "J" on the data tables.

3.0 Qualifier Summary Tables

A. ICP Metals Analysis

Analyte	Report Number	Samples	Validation Qualifier	Reason for Qualification
calcium	G6F190128	000494, 000495, 000496, 000497, 000498, and 000499	J	positive results reported between the MDL and RL
iron	G6F190128	000500 and 000501	J	positive results reported between the MDL and RL
magnesium	G6F190128	P-0668, P-0669, P-0670, P-0671, P-0672, P-0673, P-0674, 000495, and 000496	J	positive results reported between the MDL and RL

B. ICP/MS Metals Analysis

Analyte(s)	Report Number	Sample(s)	Validation Qualifier	Reason for Qualification
manganese	G6F190128	P-0668, P-0669, P-0670, P-0672, P-0673, and P-0674	UJ	blank contamination
silver, cadmium, and vanadium	G6F190128	P-0668, P-0669, P-0670, P-0671, P-0672, P-0673, P-0674, 000494, 000495, 000496, 000497, 000498, and 000499	J	positive results reported between the MDL and RL
beryllium	G6F190128	P-0668, P-0671, P-0672, 000494, 000495, 000496, 000497, 000498, and 000499	J	positive results reported between the MDL and RL
nickel	G6F190128	000494	J	positive results reported between the MDL and RL

Analyte(s)	Report Number	Sample(s)	Validation Qualifier	Reason for Qualification
zinc	G6F190128	P-0668, P-0670, P-0671, P-0672, P-0674, 000494, 000495, 000496, 000497, 000498, and 000499	J	positive results reported between the MDL and RL

C. Mercury Analysis

Analyte	Report Number	Samples	Validation Qualifier	Reason for Qualification
mercury	G6F190128	P-0668, P-0669, P-0670, P-0671, P-0672, P-0673, P-0674, 000494, 000495, 000496, 000497, 000498, and 000499	ΟJ	blank contamination
mercury	G6F190128	000500 and 000501	J	positive results reported between the MDL and RL

4.0 Overall Assessment

Based on this QA review, several ICP/MS manganese results and all mercury environmental sample results were qualified as "not-detected" due to blank contamination. In addition, several ICP, ICP/MS, and mercury results were qualified as estimated due to positive results reported between the MDL and RL.

5.0 Inorganic Data Qualifiers and Valid Reason Codes

Inorganic Data Qualifiers

- U Analyte not detected at the detection limit concentration.
- J Reported value is an estimated concentration.
- UJ Analyte not detected at an estimated detection limit concentration.
- R These data were rejected and were not used for any purposes.
- UR The analyte was not detected. The detection limit is unreliable and may be representative of a false negative. These data were rejected and are not usable for any purpose.

Valid Reason Codes

- 1 Holding time violation
- 2 Method blank contamination
- 3 Surrogate recovery
- 4 Matrix spike/matrix spike duplicate recovery
- 5 Matrix spike/matrix spike duplicate precision outside limits

- 6 Laboratory control sample recovery
- 7 Field blank contamination
- 8 Field duplicate precision outside limits
- 9 Other deficiencies (including cooler temperature)
- A Absence of supporting QC
- S ICV, CCV or column performance check problem Y Initial and continuing calibration blank problem
- M Interference check samples problem
- O Post-digestion spike outside of 85-115%
- F MSA correlation coefficient <0.995, or MSA not done
- G Serial dilution problem
- K DFTPP or BFB tuning problem
- Q Initial calibration problem
- X Internal standard recovery problem
- V Second source standard calibration verification problem
- L Low bias
- Z Retention time problem
- N Counting time error (radionuclide chemistry)
- W Detector instability (radionuclide chemistry)
- C Co-elution of compounds
- E Value exceeds linear calibration range
- I Interferences present during analysis
- T Trace level compound, poor quantitation
- P 1C/2C precision outside of limits
- B LCS/LCSD precision outside limits
- D Lab Dup/Rep precision outside limits
- H High bias

6.0 Signatures

Report prepared by:

Thomas H. Weinmann

Mouras A. Weim

Senior Quality Assurance Chemist I

Report reviewed by:

Steven J. Lennon

Quality Assurance Chemist

Report reviewed and approved by:

Rock J. Vitale, CEAC, CPC

Technical Director of Chemistry/

Principal


ENVIRONMENTAL STANDARDS, INC. 1140 Valley Forge Road

P.O. Box 810

Valley Forge, PA 19482-0810

(610) 935-5577

Date: 8/9/06

			Lab Sample	G6F1901	128001				G6F190	128002		***************************************		G6F190	28003	***************************************	•••••	
			Field Sample	P-0668					P-0669		***************************************	***************************************	***************************************	P-0670	***************************************	***************************************	•	***************************************
			Collect Date	6/10/200	6		***************************************		6/10/200	6	***************************************	•••••	***************************************	6/10/200	6			***************************************
			Туре	N			***************************************		N	***************************************	~~~~~	***************************************		N	······		~~~~	
			Parent		*******************************	*****		•••••		•••••			************		••••••	•••••	***************************************	***************************************
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	ROL	Uncert
40CFRE	TSP	Total Suspended	G							·	1	1	 		**********************			
40CFRJ	PM-10	Particulate Matte	G	0.0292		0.0001	0.0001	0	0.0257		0.0001	0.0001	0	0.0299		0.0001	0.0001	0
SW601	AL	ALUMINUM	UG	328		40.8	240	0	249		40.8	240	0	305		40.8	240	0
OB	CA	CALCIUM	UG	898	U	898	3000	0	898	U	898	3000	0	898	U	898	3000	0
	FE	IRON	UG	375		14.4	120	0	310		14.4	120	0	563		14.4	120	0
	MG	MAGNESIUM	UG	307	J/T	97.2	600	0	264	J/T	97.2	600	0	306	J/T	97.2	600	0
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	U	2020	6000	Ö	2020	U	2020	6000	0
5	AG	SILVER	UG	0.027	J/T	0.014	1.2	0	0.048	J/T	0.014	1.2	0	0.044	J/T	0.014	1.2	0
_	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0
	BA	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0
	BE	BERYLLIUM	UG	0.0085	J/T	0.0084	1.2	0	0.0084	U	0.0084	1.2	0	0.0084	U	0.0084	1.2	0
	CD	CADMIUM	UG	0.057	J/T	0.054	1.2	0	0.059	J/T	0.054	1.2	0	0.077	J/T	0.054	1.2	0
	CO	COBALT	UG	3.7	U	3.7	12	Q	3.7	U	3.7	12	0	3.7	U	3.7	12	0
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	0	10.3	U	10.3	12	0	10.3	U	10.3	12	0
	CU	COPPER	UG	17.5		2.9	6	0	18.2		2.9	6	0	45.4	***************************************	2.9	6	0
	MN	MANGANESE	UG	15.4	UJ/2	15.4	17.5	0	13.2	UJ/2	13.2	17.5	0	14.3	UJ/2	14.3	17.5	0
	MO	MOLYBDENUM	UG	1,1	U	1.1	6	0	1.1	U	1.1	6	0	1.1	U	1.1	6	0
	NI	NICKEL	UG	3.5	U	3.5	6	0	3.5	U	3.5	6	0	3.5	U	3.5	6	0
	PB	LEAD	UG	2.2		0.34	1.2	0	1.8	***************************************	0.34	1.2	0	2.5	~~~~~	0.34	1.2	0
	SE	SELENIUM	UG	1.7	U	1,7	3.6	0	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0
	V	VANADIUM	UG	3.1	J/T	2.9	12	0	5′8	J/T	2.9	12	0	3.1	J/T	2.9	12	0
	ZN	ZINC	UG	7.7	J/T	6.2	24	0	6.2	U	6.2	24	0	7.3	J/T	6.2	24	Ö
SW7471	HG	MERCURY	UG	0.055	UJ/7	0.055	0.14	0	0.045	UJ/7	0.045	0.14	0	0.055	UJ/7	0.055	0.14	0

Report Generated: Friday, August 04, 2006 Page: 1 of 5

			Lab Sample	<u></u>	28004			·····	G6F1901	28005	······	~~~~~	*********	G6F1901	28006	***************************************			
			Field Sample	P-0671					P-0672					P-0673					
			Collect Date	6/10/200	6				6/10/200	6		6/10/2006							
			Туре	N					N					N					
			Parent		•••••		•••••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			************	***************************************	***************************************						
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	ADL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MOL	ADL	Uncert	
40CFRB	TSP	Total Suspended	G																
40CFRJ	PM-10	Particulate Matte	G	0.036		0.0001	0.0001	0	0.0295		0.0001	0.0001	0	0.0295		0.0001	0.0001	0	
SW601	AL	ALUMINUM	UG	456		40.8	240	0	353		40.8	240	0	378		40.8	240	0	
08	CA	CALCIUM	UG	898	U	898	3000	0	898	U	898	3000	0	898	U	898	3000	0	
	FE	IRON	UG	558		14,4	120	0	474		14.4	120	0	440		14.4	120	0	
	MG	MAGNESIUM	UG	413	J/T	97.2	600	0	317	J/T	97.2	600	0	327	J/T	97.2	600	0	
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	U	2020	6000	0	2020	IJ	2020	6000	0	
	AG	SILVER	UG	0.028	J/T	0.014	1.2	0	0.017	J/T	0.014	1.2	0	0.019	J/T	0.014	1.2	0	
	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	Ų	1.9	3.6	Q	1.9	U	1.9	3.6	0	
	ВА	BARIUM	UG	34.8	IJ	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0	
	BE	BERYLLIUM	UG	0.01	J/T	0.0084	1.2	0	0.012	J/T	0.0084	1.2	0	0.0084	U	0.0084	1.2	0	
	CD	CADMIUM	UG	0.11	J/T	0.054	1.2	0	0.066	J/T	0.054	1.2	0	0.06	J/T	0.054	1.2	0	
	CO	COBALT	UG	3.7	U	3.7	12	0	3.7	Ų	3.7	12	0	3.7	U	3.7	12	0	
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	0	10.3	U	10.3	12	0	10.3	U	10.3	12	0	
	CU	COPPER	UG	27		2.9	6	0	20.4		2.9	6	0	18		2.9	6	0	
	MN	MANGANESE	VG	19.5		1.9	6	0	14.9	UJ/2	14.9	17.5	0	16.2	UJ/2	16.2	17.5	0	
	MO	MOLYBDENUM	UG	1.1	U	1.1	6	0	1.1	U	1.1	6	0	1.1	U	1.1	6	0	
		NICKEL	UG	3.5	U	3.5	6	0	3.5	U	3.5	6	0	3.5	U	3.5	6	0	
	P8	LEAD	UG	2.7		0.34	1.2	0	2.1	••••	0.34	1.2	0	1.9		0.34	1.2	0	
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	
	i		UG	3.4	J/T	2.9	12	0	3.2	J/T	2.9	12	0	3.2	J/T	2.9	12	0	
	ZN	ZINC	UG	10	J/T	6.2	24	0	6.4	J/T	6.2	24	0	6.2	U	6.2	24	0	
SW7471	HG	MERCURY	UG	0.068	UJ / 7	0.068	0.14	0	0.06	UJ / 7	0.06	0.14	0	0.062	UJ/7	0.062	0.14	0	

Report Generaled: Friday, August 04, 2006 Page: 2 of 5

			Lab Sample	G6F190	128007				G6F190	128008				G6F190	128009				
			Field Sample	P-0674					000494					000495					
			Collect Date	6/10/200	6			***************************************	6/10/200	6	***************************************			6/10/2006					
			Туре	FD				***************************************	N			•••••		N	••••••				
			Parent	P-0668	***************************************	***************************************	······································							 	•••••				
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MOL	ADL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	ROL	Uncert	
40CFRE	TSP	Total Suspended	G						0.063		0.0001	0.0001	0	0.0518		0.0001	0.0001	0	
40CFRJ	PM-10	Particulate Matte	G	0.0243	·····	0.0001	0.0001	0		ļ	 	†	†			†	†	†	
SW601	AL	ALUMINUM	UG	310		40.8	240	0	861		40.8	240	0	672	<u> </u>	40.8	240	10	
08	CA	CALCIUM	UG	898	U	898	3000	0	1100	J/T	898	3000	0	902	J/T	898	3000	0	
	FE	IRON	UG	370		14.4	120	0	980		14.4	120	0	731		14.4	120	0	
	MG	MAGNESIUM	UG	296	J/T	97.2	600	0	618		97.2	600	0	479	J/T	97.2	600	0	
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	U	2020	6000	0	2020	U	2020	6000	0	
SW602	AG	SILVER	UG	0.019	J/T	0.014	1.2	0	0.12	J/T	0.014	1.2	0	0.095	J/T	0.014	1.2	0	
0	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	
	ВА	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0	
	BE	BERYLLIUM	UG	0.0084	IJ	0.0084	1.2	0	0.015	J/T	0.0084	1.2	0	0.02	J/T	0.0084	1.2	0	
	CD	CADMIUM	UG	0.081	J/T	0.054	1.2	0	0.12	J/T	0.054	1.2	0	0.094	J/T	0.054	1.2	0	
	CO	COBALT	UG	3.7	U	3.7	12	0	3.7	U	3.7	12	0	3.7	U	3.7	12	0	
	CR	СНЯОМІИМ, ТО	υG	10.3	U	10.3	12	0	10.3	U	10.3	12	0	10.3	U	10.3	12	0	
	CU	COPPER	UG	27.6		2.9	6	0	211	***************************************	2.9	б	0	147	***************************************	2.9	6	0	
	MN	MANGANESE	UG	13.3	UJ/2	13.3	17.5	0	35.4	***************************************	1.9	6	0	29.2		1.9	6	0	
	MO	MOLYBDENUM	UG	1.1	U	1.1	6	0	1.1	U	1.1	6	0	1.1	U	1.1	6	0	
	NI	NICKEL	UG	3.5	U	3.5	6	0	3.7	J/T	3.5	6	0	3.5	U	3.5	6	Ü	
	PB	LEAD	UG	2		0.34	1.2	0	3.1		0.34	1.2	0	2.5	***************************************	0.34	1.2	0	
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	
	V	VANADIUM	UG	3	J/T	2.9	12	0	4.3	J/T	2.9	12	0	3.8	J/T	2.9	12	0	
	ZN	ZINC	UG	7.4	J/T	6.2	24	0	13.1	J/T	6.2	24	0	8.3	J/T	6.2	24	0	
SW7471	HG	MERCURY	UG	0.086	UJ/7	0.086	0.14	0	0.08	UJ/7	0.08	0.14	0	0.058	UJ / 7	0.058	0.14	0	

Report Generated: Friday, August 04, 2006 Page: 3 of 5

			Lab Sample		128010				G6F190	128011				G6F1901	128012			
			Field Sample	3					000497					000498				
			Collect Date	6/10/200	6				6/10/200	6				6/10/200	6			
			Туре	N					N					N	•••••			
			Parent								••••		***************************************		~~~~	•••••••••••		
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert
40CFRB	TSP	Total Suspended	G	0.0525		0.0001	0.0001	0	0.0658		0.0001	0.0001	0	0.0836		0.0001	0.0001	0
40CFRJ	PM-10	Particulate Matte	G								·					†	<u> </u>	1
SW601	AL	ALUMINUM	UG	648		40.8	240	0	828		40.8	240	0	1050		40.8	240	0
08	CA	CALCIUM	UG	997	J/T	898	3000	0	1220	J/T	898	3000	0	1530	J/T	898	3000	0
	FE	IRON	UG	784		14.4	120	0	997		14.4	120	0	1590		14.4	120	0
	MG	MAGNESIUM	UG	504	J/T	97.2	600	O	628	•	97.2	600	0	729		97.2	600	0
	NA	SODIUM	UG	2020	U	5050	6000	0	2020	U	2020	6000	0	2020	U	2020	6000	0
SW602	AG	SILVER	UG	0.11	J/T	0.014	1.2	0	0.075	J/T	0.014	1.2	0	0.053	J/T	0.014	1.2	0
O	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0
į	ВА	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0
	BE	BERYLLIUM	UG	0.033	J/T	0.0084	1.2	0	0.025	J/T	0.0084	1.2	0	0.04	J/T	0.0084	1.2	0
	CD	CADMIUM	UG	0.098	J/T	0.054	1.2	0	0.13	J/T	0.054	1.2	0	0.13	J/T	0.054	1.2	0
	CO	COBALT	UG	3.7	U	3.7	12	0	3.7	ប	3.7	12	0	3.7	U	3.7	12	0
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	0	10.3	U	10.3	12	Ö	10.3	U	10.3	12	0
	CU	COPPER	UG	214		5.9	6	0	139		2.9	6	0	152	•••••••••••	2.9	6	0
	MN	MANGANESE	UG	27	***************************************	1.9	6	0	34.2		1.9	6	0	34.7	***************************************	1.9	6	0
	MO	MOLYBDENUM	UG	1.1	U	1,1	6	0	1.1	U	1.1	6	0	1.1	U	1,1	6	0
	NI	NICKEL	UG	3.5	U	3.5	6	0	3.5	U	3.5	6	0	3.5	U	3.5	6	0
	PB	LEAD	UG	2.8		0.34	1.2	0	3.2		0.34	1.2	0	3.2		0.34	1.2	0
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0
	V	VANADIUM	UG	3.9	J/T	2.9	12	0	4.5	J/T	2.9	12	0	4.9	J/T	2.9	12	0
	ZN	ZINC	UG	10.6	J/T	6.2	24	0	15.8	J/T	6.2	24	0	13	J/T	6.2	24	0
SW7471	HG	MERCURY	UG	0.073	UJ/7	0.073	0.14	0	0.081	UJ/7	0.081	0.14	0	0.084	UJ/7	0.084	0.14	0

Report Generated: Friday, August 04, 2006 Page: 4 of 5

			Lab Sample	G6F190	128013				G6F1901	128014				G6F1901	128015			
			Field Sample	000499					000500			***************************************	***************************************	000501	•••••			
			Collect Date	6/10/200	6				6/10/200	6			•	6/10/200	6			
			Туре	N				•••••••	тв	*************************	***************************************	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FB		***************************************		
			Parent			***************************************			AM-5-TS	p				AM-2-TS	p	•••••		
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MOL	ROL	Uncert
40CFRB	TSP	Total Suspended	G	0.0655		0.0001	0.0001	0	0.0018		0.0001	0.0001	0	0.0001	U	0.0001	0.0001	0
40CFRJ	PM-10	Particulate Matte	G			 		 			1	†				†	<u> </u>	†
SW601	AL	ALUMINUM	UG	836		40.8	240	0	40.8	U	40.8	240	O	40.8	U	40.8	240	0
08	CA	CALCIUM	UG	1140	J/T	898	3000	0	898	U	898	3000	0	898	U	898	3000	0
	FE	IRON	UG	972		14,4	120	Ü	21.6	J/T	14.4	120	0	15.9	J/T	14.4	120	0
	MG	MAGNESIUM	UG	605		97.2	600	O	97.2	U	97.2	600	0	97.2	U	97.2	600	0
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	U	2020	6000	0	5050	U	2020	6000	0
SW602	AG	SILVER	UG	0.041	J/T	0.014	1.2	0	0.014	U	0.014	1.2	0	0.014	U	0.014	1.2	0
0	AS	ARSENIC	UG	1.9	U	1.9	3.6	Q	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0
	ВА	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0
	BE	BERYLLIUM	UG	0.036	J/T	0.0084	1.2	0	0.0084	U	0.0084	1.2	Ü	0.0084	U	0.0084	1.2	0
	CD	CADMIUM	UG	0.098	J/T	0.054	1.2	0	0.054	U	0.054	1.2	0	0.054	U	0.054	1,2	0
	CO	COBALT	UG	3.7	U	3.7	12	0	3.7	U	3.7	12	0	3.7	U	3.7	12	0
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	Q	10.3	U	10.3	12	0	10.3	U	10,3	12	0
	CU	COPPER	UG	72.6		2.9	6	0	2.9	U	2.9	6	0	2.9	U	2.9	6	0
	MN	MANGANESE	UG	35.4		1.9	6	0	1.9	U	1,9	6	0	1.9	U	1.9	6	0
	MO	MOLYBDENUM	UG	1.1	U	1.1	6	0	1,1	U	1,1	6	O	1,1	U	1,1	6	0
	NI	NICKEL	UG	3.5	υ	3,5	6	Ü	3.5	U	3.5	6	0	3.5	U	3.5	6	0
	PB	LEAD	UG	2.8		0.34	1.2	0	0.34	U	0.34	1.2	0	0.34	(.)	0.34	1.2	0
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0
	V	VANADIUM	UG	4.3	J/T	2.9	12	0	2.9	U	2.9	12	0	2.9	U	2.9	12	0
	ZN	ZINC	UG	11.1	J/T	6.2	24	0	6.2	U	6.2	24	0	6.2	U	6.2	24	0
SW7471	HG	MERCURY	UG	0.088	UJ/7	0.088	0.14	0	0.023	J/T	0.00036	0.12	0	0.028	J/T	0.00036	0.12	0

Report Generated: Friday, August 04, 2006 Page: 5 of 5

Inorganic Analyses Support Documentation

Sample Callection Dates: Job Number: Project Manager: Laboratory: Deliverables: CLP Tier I			Applicable		tion Date No's.;	. /			
Tier I	·····»					Ci	efer to T Jolity Ass	able 1 in urance R	i the eview
Tier I				mple No.			Lab. Cor		
11777	 ✓				***********	************	~~~~		********
Limited					~~~~				********
Other		······································					•	~~~~~	
		<u></u>	***************************************						······
The following table indicates criteria which were examined, the dentified problems, and support documentation attachments.		{ F	Criteria Examined Detail reck (y) il 1 potnate Letta Comments 8	ìn Yes⊹ori erifor	Check Footna	Problems dentified (d) If Yes te Number nents Below	or for	Docum Attac Check Ves	opori lentation funents (() if or identify nent No.
		J		,		······			······································
lolding Times	11					$+f_{J}$	^		7
lonk Analysis Results	V	1	1		7	1/1/	·		Ž
otrix Spike (Fredigestion) Results									*
uplicate Analysis Results 🎇 Field 🛄 Lab	V	1	1			1	Ų	7	7
uantitation of Pesuits	1	1				7		,	7
stection Limits / Sensitivity	1	1	1						7
itici Calibrations	17,	1	V				1	,	7
ontinuing Calibrations	4	1	1			17		7	7
aboratory Control Standards (LCS)	1		/			1/	1	,	7
P Linear Runge Analysis	1								
P Interference Checks	14		1			1			7
P Serial Dilutions	1		1			7	,		7
P Post-Digestion Spike	1		1				-		71
FAA Post-Digestion Spikes									·····
FAA Duplicate Injections									
P Multiple Exposures						†			
FAA Standard Additions						†			
CHAMBOO & COMMISS	······	·	····			+ 1			
RDL Standards	1		} . ₹				: ;	. 1	

BLANK ANALYSIS RESULTS FOR INORGANIC PARAMETERS

		BLA	NK.	TYPE	V	()			1	QUALIFICATION	QUAURONION
MATRIX (Aq., S)	i	ETH	Ţ		MENT	PELD	BLANK SAMPLE NUMBER	NAGTAMBIANT	CONCENTRATION	UMST FOR AOUEGUS SAMPLES (99/L)	UMIT FOR SOUD SAMPLES (mg/kg)
		COB	ызы	Fig	ana.	JE.D		CONTAMINANT	(units)	Sx	
Air	1	J			 		. End	35 ((4%)	M9		Sx
2.660				•			dodieus	all 4 MDL			
			2800				6180323-NB 6180323-NB		3.5	(17.5)	
				1.Sept.			000200	100	20.3	101.5	
								{	21.6	(108)	
-							\$00.201	mercuit	0.023	0.115	
2							20.201	1004	15.9	79.5	
								wetched	0.028	(0.14)	
					: :;			3			
			į								
	į		1								

											~~~~~
						-					
									-		
							de sum				
					ì						
***************************************	-	-		ļ	*		***				
				*			<u></u>				
					-						
	-		-				-				
		•								· . ·	
			ل			l	<u>l</u> _		<u>-</u>		

								~~~~~				<u> </u>	
An ==	Aqueous;	اات	سلسد			<u> </u>							
	rigocous,	.,	-3011										
Notes:								***************************************					
~~~					***************************************						······		*
		*************	······································							***************************************			
						······································	***************************************		•	***************************************			

EVALAUTION OF INORGANIC DUPLICATE ANALYSIS PRECISION

		PRECIS	ION OBJECTIVES'
-	Units ug	Analyte > or = 5 X RL	RPD < or ≈ 40
***************************************		Analyte < 5 X RL	Difference < or = RL Times 2

^{*} Enter the project-specific or default acceptance criteria

	P-06	68		P-0	674	**************************************	***************************************	***************************************	***************************************
	Analyte			Analyte					
ANALYTE	Concentration	Qual	RL	Concentration	Qual	RL	Difference	RPD	Notes
aluminum	328		240	310		240	18	NA	IN
iron	375		120	370		120	5	NA	IN
magnesium	307	٦	600	296	J	600	11	NA	IN
silver	0.027	J	1.2	0.019	J	1.2	0.008	NA	IN
beryllium	0.0085	J	1.2	0.0084	U	1.2	0.0001	NA	IN
cadmium	0.057	J	1.2	0.081	J	1.2	0.024	NA	IN
copper	17.5		6	27.6		6	10.1	NA	IN
manganese	15.4		6	13.3		6	2.1	NA	IN
lead	2.2		1.2	2		1.2	0.2	NA	IN
vanadium	3.1	J	12	3	J	12	0.1	NA	IN
zinc	7.7	J	24	7.4	J	24	0.3	NA	IN
mercury	0.055	,j	0.12	0.086	J	0.12	0.031	NA	IN
***************************************						•••••			ļ
	·····	-						······	
······································								······································	
			I	***************************************				······································	

NOTES:

Qual) Column to enter J, U, U*, or B

RPD) Relative Percent Difference

RL) Reporting Limit

- J) The analyte concentration should be considered estimated.
- U) The analyte was not-detected in the sample. The numerical value will be used for comparison purposes.
- U* or B) The result was blank qualified. The numerical value will be used for comparison purposes.
- NA) The RPD or Difference is not applicable.
- 1) Both results are > or = 5 X RL and RPD over acceptance limit, flag positive results "J".
- 2) At least one of the results is < 5 X RL and difference is over acceptance limit, flag positive results "J" and "not-detected" results "UJ".

moonad.

CALIBRATION CHECK SUMMARY

Method: 6010	PE ICP2	- SUNIVIANO OF THE CR SUNIVIAN
	3 56 (05 2.	Reported: 07/03/06 10:25:25
Method: 6010	Instrument: PE ICP2	Batch: JUL0106AX.csv
Sample ID	Type	File - Sequence Analyzed Date Q
CCV4 CB CSA CSAB_4.0 CCV CCB CCV CCB CCV CCB	ICV ICB ICSA ICSAB CCV CCB CCV CCB CCV CCB	JUL0106AX.csv, 4 07/01/2006 08:46:43 [] JUL0106AX.csv, 5 07/01/2008 08:49:04 [] JUL0106AX.csv, 7 07/01/2008 08:56:14 [] JUL0106AX.csv, 8 07/01/2006 08:58:46 [] JUL0106AX.csv, 15 07/01/2006 09:28:06 [] JUL0106AX.csv, 16 07/01/2006 09:28:06 [] JUL0106AX.csv, 27 07/01/2006 10:07:27 [] JUL0106AX.csv, 28 07/01/2006 10:09:47 [] JUL0106AX.csv, 33 07/01/2006 10:33:31 []

STL Sacramento				LIBRAT	1001811		1848 3
Method: 5010	PE ICP2			Reported	l: 07/03/06	10:26	5:25
Department: 120 (Metals)			······································			oe: OP1	
Sample: ICV4 (ICV)	M	ult: 1.00	Dilli:	1.00	Divs:	1.00	
Instrument: PE 4300	Chan	nel 268		•••••••••••••••••••••••••••••••••••••••		1.00	
File: JUL0106AX.csv #4							
Acquired: 07/01/2006 08:46:43		160100			Qo-	* ap	
Calibrated: 07/01/2006 08:38:25	PE:	ICP2			,	•	
0770 (2000 00.00.20				Un	iits: mg/L		
CASN Analyte Name	Area	Found		Tru	a 8	~ %F8	
7440-70-2 Calcium		10.364	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.00		104	
7439-95-4 Magnesium		10.684		10.00		107	<u> </u>
7440-66-6 Zinc		1.0294		1.000	•	102	X
7429-90-5 Atuminum		10,243		10.00	_	102	8
7439-89-6 Iron		10.282-		10.00		102	8
7439-89-6 Iron		10.578		10.000		108	M
7440-23-5 Sodium		10.137		10.000		101	87
7440-23-5 Sodium		10.464		10.000		105	ल
CASN ISTD Name	Area	Amount					
17440655 Y_ Axiel		96,879	·····				<u>Q</u>
77440855 Y_ Radial		97.143					Ø
In_Axial In Axial		94.893					M
In_Redial In Redial		97.313					8
Sc_Axial Sc Axial		97.579					(3)
lc_Radial Sc Radial		97.786					M

			·········	••••••			
		4.4	:	1	Reviewed by:	Date:	,
·····	 	******		********			{
IOB Reports					Sevem Trent Laboratories		.<
					Seveni nen Lacoratorios	Version: 6,02,068	

View Page 2 of 11

STL Sacramento				BLA	NK RE	PORT
Method: 6010	PE ICP2	***************************************		***************************************	07/03/06	
Department: 120 (Metals)			~		Source	: OPTIM/
Sample: ICB	M	ult: 1.00	Dilf:	1.00	Divs:	1.000
Instrument: PE 4300	Chan	nel 268	······	***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
File: JUL0106AX.csv # 5	•	60100				
Acquired: 07/01/2006 08:49:04		ICP2				
Calibrated: 07/01/2006_08:38:25	5° Sm :	iork				
		~~~~~~~		Uni	ts: mg/L	
CASN Analyte Name	Area	Amount	RL	MDL	%RSD	Q
7440-70-2 Calcium		0.00871	0.50	0.0067	~~~~~~	
7439-95-4 Magnesium		0.00924	9.50			••••
7440-66-6 Zinc		0.00027	0.0050	0.0033		
7429-90-5 Aluminum	2 MDL	0.01041	0.10	0.015		Ø
7439-89-6 fron 7439-89-6 fron	•	0.01031	0.050	0.012	0.0026	
7409-09-0 iron 7440-23-5 Sodium		0.01152	0.050	\$10.0	0.0082	
7440-23-5 Sodium		0.04042	0,50	0.0082	0.022	
		0.16901	0.50	0.0082	0.18	Ø
CASN ISTD Name	Area	Amount		N.		Q
A7440655 Y Axial		98,354	•	}		<u> </u>
R7440655 Y_ Radial		99.023				<u> </u>
In_Axial In Axial	•	98.377				121
In_Radial in Radial		99.601	ş		<b>8</b> .	83
Sc_Axial Sc Axial		98.352	Į.	TO PID	~~ <u>~</u>	N
Sc_Radial Sc Radial		99.285	8	\		80
				NA		
			فمديد	7	Ls Table MOL	<b>-</b> S
			GU.	8.8	AVA. >	
			· <	c Asc	MOL	\$

<b>}</b>			٠
	Reviewed by:	Date:	
·	 ······································	***************************************	1
IDS Reports	Severn Trent Laboratorica	Version: 8.02.0	68

View Page 3 of 11

Sequence No -- 6 Sample ID FQL Analyst: Aww Initial Sample Wt: Dilution:

Autosampler Location: 38 Date Collected: 7/1/2006 8:52:40 AM Data Type: Reprocessed on 7/1/2006 10:46:27 AM Initial Sample Vol: 0.0833 mL Sample Prep Vol: 100 mL

Mean Data: PQL						
Analyte In Axial In Radial Y Azial Y Radial Sc Axial Sc Radial	Mean Corrected Intensity 560093.9 26608.2 1260013.6 127052.3 1333285.9 132279.2	Calib Conc. Units 98.661 \$ 98.434 \$ 98.953 \$ 98.444 \$ 98.773 \$ 14.	Std.Dev. 0.4674 0.1842 0.4710 0.3544 0.4047 0.3804	Sample Conc. Units	Std.Dev,	0.47% 0.19% 0.48% 0.36% 0.41%
Al_1 396.153 Rt Al_2 308.215 Rt Ca 315.687 Rt Fe_1 273.955t Fe_2 238.853 Rt Mg 279.077 Rt Na_1 589.592 Rt Na_2 330.237 Rt Zn 206.200t	1225.6 341.2 1734.4 1489.6 30.2 213.6 2556.2 70.1 177.5	0.10555 mg/L 0.1 0.09883 mg/L ** 0.10496 mg/L **	0.000122 0.001130 0.001272	126.71 mg/L 118.65 mg/L 126.01 mg/L 38.115 mg/L 36.401 mg/L 131.03 mg/L 299.55 mg/L 1285.3 mg/L 6.8459 mg/L	0.146 1.357 1.526 1.7967 11.0529 4.466 3.368 178.79	0.39% 0.12% 1.14% 1.21% 4.71% 30.30% 3.41% 1.12% 13.91% 1.20%

50-150% OK

STL Sacramento	-	C/	LIBRAT	ION F	3EPO	PT
Method: 6010	PE ICP2	***************************************	Reported		•••••	~~~~~
Department: 120 (Metals)		***************************************	***************************************		······································	
Sample: ICSA	Mult: 1.	.00 Diff:	1.00		rce: OPT	
Instrument: PE 4300			1.00	Divs:	1,00	<b>U</b> 
File: JUL0106AX.csv #7	Channel 268					
	Method 60100	)				į
Acquired: 07/01/2006 08:56:14	PE ICP2					ļ
Calibrated: 07/01/2006 08:38:25			Ur	nits: mg/L		•
CASN Analyte Name	Area For	und	Tru	····	%R	ز ک
7440-70-2 Calcium		7.57				<u>Q</u>
7439-95-4 Magnesium		.78~	500.0		89.8	<b>M</b>
7440-66-6 Zinc	0.01	· · · ·	500.0	iQ.	99.4	[2]
7429-90-5 Aluminum	522		500.0	.n		***
7439-89-6 Iron	188		200.0		105	EX.
7439-89-6 Iron		.05	200.0		94.4	Ε.
7440-23-5 Sodium	0.000		200.0	O .	98.0	
7440-23-5 Sodium	-2.17				*	(S)
CASN ISTD Name	Area Amor	uni				
A7440655 Y_ Axial		598 /				<u>Q</u>
R7440655 Y_ Radial	87.2					
In_Axial In Axial	76.7					<u> </u>
In_Radial In Radial	83.9	• •				図
Sc_Axial Sc Axial	83.8					图 图
Sc_Radial Sc Radial	86.2					<b>双</b>
						~~~

•		Reviewed by:	Date:
·····	·		}
IDS Reports		Severn Trent Laboratories	Version: 6.02.083

Page 4 of 11

STL Sacramento			CA	LIBRA	TION	REPO) PT
Method: 6010	PE ICP2				ed: 07/03/		`````}
Department: 120 (Metals)		***************************************	····		Soi	uce: OP	
Sample: ICSAB_4.0	Mu	ilt: 1.00	Diff:	1.00	Divs:	1.00	
Instrument: PE 4300	Chanr	nel 268					7
File: JUL0106AX.csv #8		60100					
Acquired: 07/01/2006_08:58:46	PE						
Calibrated: 07/01/2006 08:38:25		w. 2.		£.	Joits: mg/	L	
CASN Analyte Name	Area	Found		······································	นอ	0) P	لـــــا
7440-70-2 Calcium		473.56				%R	<u>Q</u>
7439-95-4 Magnesium		500.17		500.		94.7	X
7440-66-6 Zinc		0.95913		500.		100	図
7429-90-5 Aluminum		500,46		1.00		95.9	8
7439-89-6 fron		188.80		500. 200.		100~	國
7439-89-6 Iron		197.72		200. 200.		94,4	Ø
7440-23-5 Sodium		0.05692		۵۷۷.		98.89	2 3
7449-23-5 Sodium		-0.00187				*	
CASN ISTD Name	Area	Amount					Q
A7440655 Y Axial		83,333	•	·····	·····		<u> </u>
R7440655 Y_ Radial		90.298					SS
In_Axial In Axial		77.922					8
In_Radial In Radial		86.719					ΣĮ.
Sc_Axial Sc Axial		89.605					80
Sc_Radial Sc Radial		89.550					2

۲.		 			
ł					
	÷ .		Reviewed by:	Date:	
١.		 			3
	IDB Reports				
	mo neputs		Severn Trent Laboratories	Ven	ion: 6.06.068

View Page 5 of 11

STL Sacramento			C/	LIBRAT	ION F	≀=p∆	n Car
Method: 6010	PE ICP2		******	Reported			~
Department: 120 (Metals)			*** ***********************************		·····	·	
Sample: CCV (CCV)	£.8	ult: 1.00	Dilf:	4.00		ce: OP1	
Instrument: PE 4300	(9)	GIE. 1,609	OIII:	1.00	Divs:	1.00	0
		nel 268)
File: JUL0106AX.csv # 15	Method	O0100					
Acquired: 07/01/2006 09:25:48	PE	ICP2					
Calibrated: 07/01/2006_08:38:25				Un	its: mg/L		
CASN Analyte Name	Area	Found		Tru	~	······································	لــــــا
7440-70-2 Calcium		24,870	**********		-	%R	Q
7439-95-4 Magnesium		29.970 28.157		25.000	•	98.7	M
7440-66-6 Zinc		2.5322		25,000		105	E
7429-90-5 Aluminum		24.791		2,5000		101	\boxtimes
7439-89-6 Iron		25.307		25.000		99.2	Ø
7439-89-6 fron		28,040		25,000		10}	M
7440-23-5 Sadium		23.980		25.000		104	E
7440-23-5 Sodium		24.987		25.000	,	95.9	Ø
CASN ISTD Name				25.000	,	9.9	Ø
17440855 Y_Axial	Area	Amount					Q
37440655 Y_ Radial		94.150					Ø
In_Axial In Axial		95.727					3
In_Radial In Radial		91,849					\mathbb{Z}
Sc. Axial Sc Axial		96.050					\mathbf{M}
C_Radial Sc Radial		94.961					\boxtimes
		96.362					Ø

ï	Reviewed by:	Date:
IDS Reports	Severi Treat Expossibiles	

View Page 6 of 11

STL Sacramento (916) 373 - 5600

Version: 6.02,063

Method: 6010	PE ICP2		R	eported:	07/03/06	10:26:25
Department: 120 (Metals)			***************************************		Qaoroa	: OPTIMA
Sample: CCB	M	alt: 1.00	Diff: 1	.00	Divs:	. UF HIVE 1.000
Instrument: PE 4300	Chan	nel 268				1.000
File: JUL0106AX.csv # 16		16010O				
Acquired: 07/01/2006 09:28:06		CP2				
Calibrated: 07/01/2006 08:38:25	5 S	Urz		Unit	s: mg/L	
CASN Analyte Name						
7440-70-2 Calcium	Area	Amount	RL	JOM	%RSD	Q
7439-95-4 Magnesium		0.00088	0.50	0.0067	0.0013	
7440-66-6 Zinc		0.01111	0.50	0.012	0.0059	2
7429-90-5 Aluminum		0.00019	0.0050	0.0033	0.000008	
7439-89-6 Iron	2 MDL	-0.00087	0.10	0.015	0.00041	3
7439-89-6 Iron		0.00187	0.050	0.012	0.00011	Ø
7440-23-5 Sodium		0.00324	0,050	0.012	0.0020	図
7440-23-5 Sodium		-0.03376	0.50	0.0082	0.0025	Ø
		0.42597	0.50	\$800.0	0.21	
CASN ISTD Name	Area	Amount				Q
17440655 Y Axial		99.056	*	~~~~		ğ
17440655 Y_Radia!		97.661				83
in_Axial in Axial		98.730				Ø
In_Radial in Radial		97.378				I
Sc. Axial Sc Axial		99.107				M
c_Radial Sc Radial		97.455				<u> </u>

•		Reviewed by:	Date:
IOB Reports	 •••••••••••••••••••••••••••••••••••••••	Severn Trent Laboratories	Marion A VI DOS

Page 7 of 11

Version: 6332.068

STL Sacramento CALIBRATION REPORT Method: 6010 PE ICP2 Reported: 07/03/06 10:25:25 Department: 120 (Metals) Source: OPTIMA Sample: CCV (CCV) Mult: 1.00 Diff: 1.00 Divs: 1.000 Instrument PE 4300 Channel 268 File: JUL0106AX.csv # 27 Method 6010O Acquired: 07/01/2006 10:07:27 PE ICP2 Calibrated: 07/01/2006 08:38:25 Units: mg/L CASN Analyte Name Area Found

***************************************		71100	COORD	rue	%H	Q
7440-70-2			25.118	25.000	100	
7439-95-4	Magnesium		26,020			M
7440-66-6			2,5411	25.000	104	Ø
7429-90-5	Aluminum			2.5000	102	
7439-89-6			25.170	25,000	101	Ø
			25,310	25.000	101	Y
7439-89-6			25.929	25.000	104	E
7440-23-5			24.194····	25,000	96.8~	Ø
7440-23-5	Sodium		25.525	25.000		
				23,000	102	[3]
CASN	ISTD Name	Area	Amount			Q
A7440655	Y_ Axial		95.524	*******************		
R7440655	Y_ Radial		95.468			<u> </u>
in_Axial						Σ
In_Radial			93.346			\mathbb{Z}
			95,631			\mathbb{Z}
Sc_Axial			96.296			Ø
Sc_Radial	Sc Radial		95.874			8
						52.3

{			***************************************	
			Reviewed by:	Date:
·	·····	······		
etroge8 801			Severn Trent Laboratorias	Name of the Area

View Page 8 of 11 Version: 6.02.068

STL Sacramento				BLA	NK RE	PORT
Method: 6010	PE (CP2		F	~~~~	07/03/06	
Department: 120 (Metals)		·	•••••		نسسست	
Sample: CCB	. Mu	ilt: 1.00	Diff:	1.00	Divs:	: OPTIMA -1.008
Instrument: PE 4300 File: JUL0106AX.csv # 28 Acquired: 07/01/2006 10:09:47 Calibrated: 07/01/2006 08:38:25	Chann Method PE I	60100		-	s: mg/L	3,500
CASN Analyte Name	Area	Amount	FIL	MOL	%RSD	
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7459-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium	4 MOL	-0.00073 0.00693 0.00004 -0.00148 0.00079 0.00328 -0.04258 0.09745	9.50 0.50 0.0050 0.10 0.050 0.050 0.50	0.0067 0.012 0.0033 0.015	0.00056 0.000062 0.00013 0.0029 0.000019	88 88 88 88 88
CASN ISTD Name A7440855 Y_Axial	Area	Amount			***************************************	. Q
R7440655 Y_Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial		100.07 99.525 100.04 100.13 100.14 99.616				N N N N N N N N N N N N N N N N N N N

*			The state of the s
}	• •	· · · · · · · · · · · · · · · · · · ·	
		Reviewed by:	Date:
	••••••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
IOB Reports .		Sevem Trent Laboratories	Version: 6.02.083

View Page 9 of 11

STL Sacramento			CA	LIBRAT	TION I	REPO	PT
Method: 6010	PE ICP2				d: 07/03/		
Department: 120 (Metals)					 Sa:	urce: OPT	rissa.
Sample: CCV (CCV)	Mu Mu	it: 1.00	Dili;	1.00	Divs:	1.00.	
Instrument: PE 4300	Chann	al 988					<u> </u>
File: JUL0106AX.csv # 33	Method						
Acquired: 07/01/2006 10:31:14	PE I						
Calibrated: 07/01/2006 08:38:25	ru i	orz					Ì
	•••••			Ų	nits; mg/	l.	
CASN Analyte Name	Area	Found		Tr	ue	%R	 Q
7440-70-2 Calcium		24.541	******	25.0		98.2	
7439-95-4 Magnesium		88.121		25.0		20.2 104	M
7440-66-6 Zinc		2,5309		2,50		101	(X)
7429-90-5 Aluminum		24,703		25.0		38.8	M
7439-89-6 Iron		25.252		25,0		101~	8
7439-89-6 Iron		26.081		25.0		104	I
7440-29-5 Sodium		23.584		25.0		94.3	2
7440-23-5 Spdium		25.884		25,00		103	X
CASN ISTD Name	Area	Amount					Q
A7440655 Y_ Axia!		82.725			•••••••••••••••••••••••••••••••••••••••		<u> </u>
R7440655 Y_ Madiel		96.262					X
In_Axial in Axial		90,341					8
In_Radial In Radial		96.163					M
Sc., Axial Sc Axial		93,419					E.
Sc_Radial Sc Radial		96.569					8

		 	***************************************				********	~~~~~	immana	
	• ••	· ·		Revie	wed by:			:	Date:	
iOB Repor		 	************	Seve	m Trant Laborate	cies		·		Version: 6.09.058

View Page 10 of 11

STL Sacramento		······		BLA	NK RE	PORT
Method: 6010	PE ICP2			Reported:	07/03/06	10:25:25
Department: 120 (Metals)				•••••	Saunza	: OPTIMA
Sample: CCB	Mc	ilt: 1.00	Dilf:	1.00	Divs:	. OF HIVIA 1.000
Instrument: PE 4300	Phone	nel 268				1,000
File: JUL0106AX.csv #34						
Acquired: 07/01/2006 10:33:31	•	60100			*	
Galibrated: 07/01/2006_08:38:25	PE I	CPZ				
04/3/4/02: 07/07/2000 /06/38/25				Unit	st mg/L	
CASN Analyte Name	Area	Amount	RL	. MDL	%ASD	<i>Q</i>
7440-70-2 Calcium		0.00026	0.50			~~~~
7439-95-4 Magnesium		0.00371	0.50 0.50	******	1.44411	****
7440-68-8 Zine		0.00022	0.0060	0.070	0.00011	\ >
7429-90-5 Aluminum	Z MDL	0.00164	0.10	*****	0.0003	•
7439-89-6 Iron		0.00135	0.050	******	0.00020	
7439-89-6 Iron		-0.00274	0.050		0.00020	
7440-23-5 Sodium		-0.05313	0.50		0.0012	·
7440-23-5 Sodium		0.29582	0.50	*******	0.25	
CASN ISTD Name	Area	Amount			ara.	
A7440655 Y Axial	***************************************	100.01	· · · · · · · · · · · · · · · · · · ·			Q
R7440655 Y_ Radial		99.821				M
In_Axial In Axial		89.563				<u> </u>
In_Radial In Radial		100.52				M M
Sc_Axiai Sc Axiai		100.06				⊠ ⊠
Sc_Radial Sc Radial		99.878				₩ ₩

•				
• •		**	Reviewed by:	Date;

IDS Reports			Severn Trent Laboratories	Version: 6.02.088

View Page 11 of 11

RUN SUMMARY

Method: 6010 PE ICP2 (P05) Reported: 07/01/06 12:09:23		
Method: 6010 PE IGP2 (P05) Reported: 07/01/06 12:09:23		
Method: 6010 PE IGP2 (P05) Reported: 07/01/06 12:09:23		
Method: 6010 PE IGP2 (P05) Reported: 07/01/06 12:09:23		
Method: 6010 PE ICP2 (P05) Reported: 07/01/06 12:09:23		
Method: 50/10 PE ICP2 (P05) Reported: 07/01/05 12:09:23		
Method: 50/10 PE ICP2 (P05) Reported: 07/01/05 12:09:23		
PERGP2 (P05) Reported: 07/01/05 12:09:23		
Heported: 07/01/06 12:09:23		
(Special 27 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		
Carried Anna Control of the Control		
Carried Anna Control of the Control		

File	D: JUL0106	AX.csv				Analyst:	WONGA	
#	Sample ID	Lot No.	Batch	•••••	DF	Analyzed Date	Comment	Q
1	Calib Blank_	`{			1.0	07/01/06 08:38		
2	Calib_Std_1				1.0	·		
3	Calib Std 2				1.0	·		
4	1CV4			1	1.0			
5	ICB			1	1.0		***************************************	
6	PQL-		~ 	1	1.0	·	······	
7	ICSA				1.0	·	***************************************	
8	ICSAB_4.0-				1.0	f~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
9	H8F178	G5F290000	6180328	2A	*******	07/01/06 09:05	***************************************	
10	H8F17C	G6F290000	6180328	2A		07/01/06 09:08	~~~~~~	
11	H8F17L	G6F290000	6180328	2A	1.0	07/01/06 09:11	·	
12	H7N1L	G6F190128-1	6180328	2A	1.0	07/01/08 09:15		
13	H7N1LP5-	G6F190128	6180328		5.0	07/01/06 09:18	······	
14	H7N1LZ	G6F190128-1	6180328	1	1.0	f		
15	CCV-				1.0	07/01/06 09:25		
16	CCB				1.0	07/01/06 09:28		
17	H7N1M-	G6F190128-2	6180328	2A	1.0	07/01/06 09:31	***************************************	
18	H7N1N	G6F190128-3	6180328	2A	1.0	07/01/08 09:35		
19	H7N1P	G6F190128-4	6180328	2A	1.0	07/01/06 09:38	•••••••••••••••••••••••••••••••••••••••	
50	H7N1T	G6F190128-5	6180328	2A	0.1	07/01/06 09:42		
21	H7N1W	G6F190128-6	6180328	2A	1.0	07/01/06 09:46		
22	H7N10	G6F190128-7	6180328	ZA	1.0	07/01/06 09:49		
23	H7N11	G6F190128-8	6180328	2A	1.0	07/01/06 09:53	•••••••••••••••••••••••••••••••••••••••	
24	H7N14	G6F190128-9	6180328	2A	1.0	07/01/08 09:56	***************************************	
25	H7N16	G6F190128-10	6180328	2A	1.0	07/01/06 10:00		
26	H7N17	G6F190128-11	6180328	2A	1.0	07/01/06 10:03	***************************************	
27	CCV-				1.0	07/01/08 10:07		
28	CCB				1.0	07/01/06 10:09	***************************************	
		G6F190128-13	6180328	2A	1.0	07/01/06 10:13		
30	H7N2E-	G6F190128-14	6180328	2A	1.0	07/01/05 10:16		
· · · · · · · · · · · · · · · · · · ·	H7N2F~	G6F190128-15	6180328	2A	1.0	07/01/08 10:20		
	H7N19-	G6F190128-12	6180328	2A	1.0	07/01/06 10:27		
	cc/~				1.0	07/01/06 10:31		
34	CC8~				1.0	07/01/06 10:33		

INTERNAL STANDARD SUMMARY

lle	ID: JUL0106	4X.csv			A	nalyst: WON	GΑ		
			In	ln-	Sc	Sc	Υ	Υ	
*	Sample ID	Analyzed Date	Axial	Radial	Axial	Radial	Axial	Radial "	ξ
*	Calib_Blank_	07/01/06 08:38	0.0	0.0	0.0	0.0	0.0	0.0) R
2	Calib Std 1	07/01/06 08:42	0.0	0.0	0.0	0.0	0.0	0.0	~'
3	Calib Std 2	07/01/06 08:44	0.0	0.0	0.0	0.0	0.0	0.0	-4
4	ICV4	07/01/06 08:48	94.9	97.3	97.6	97,8	96.9	97.1	ند
5	IC8	07/01/06 08:49	98.4	99.6	\$8.4	89.3	98.4	0.89	≀
8	PQL	07/01/06 08:52	98.7	98.4	98.8	98.3	99.0	98.4	~
7	ICSA	07/01/06 08:56	76.7	84.0	83.9	86.3	83.6	87.2	4
8	ICSAB_4.0	07/01/06 08:58	77.9	86.7	83.6	89.6	83.3	90.3	
3	H8F17B	07/01/06 09:05	100.4	89.2	100.7	99.2	100.7	99,4	4
0	H8F17C	07/01/06 09:08	92.8	98.2	95.3	95.5	94.4	94.6	3
*	H8F17L	07/01/06 09:11	92.0	97.6	95.9	98.0	95.1	97.1	-} ``
2	H7N1L	07/01/06 09:15	101.4	100.6	101.6	100.6	101.6	100.8	4
3	H7N1LP5	07/01/08 09:18	99.3	99.8	99.5	99.2	99.5	99.1	4
4	H7N1LZ	07/01/06 09:22	92.8	98.6	94.4	97.3	93.6	96.3	
5	CCV	07/01/06 09:25	91.9	96.1	95.0	96,4	94.1	95,7	
3	CCB	07/01/06 09:28	98.7	97.4	99.1	97,5	99.1	97.7	è
7	H7N1M	07/01/06 09:31	99.4	102.2	99.5	101.4	99.6	101.4	3
3	H7N1N	07/01/06 09:35	100.3	101.3	100.4	101.0	100.5	101.0	ġ.
3	H7N1P	07/01/06 09:38	100.4	101.4	100.8	101.0	100.7	101.1	
)	H7N1T	07/01/06 09:42	101.9	102.3	102.1	102.0	102.1	102.2	;
{	H7N1W	07/01/06 09:46	101.0	102.8	101.2	102.3	101.2	102.2	;
2	H7N10	07/01/06 09:49	100.7	102.4	100.7	101.9	100.8	102.1	
}	H7N11	07/01/08 09:53	100.9	101.3	100.8	100.5	100.7	100.7	:
Ę	H7N14	07/01/06 09:56	101.1	89.8	101,4	99.4	101.3	99.5	•
ŝ	H7N16	07/01/06 10:00	8,101	102.6	102.1	101.9	102.0	102.0	
}	H7N17	07/01/06 10:03	0.88	103.8	99.0	103.2	99.0	103.2	
,	CCV	07/01/06 10:07	93.3	95.6	96.3	95.9	95.5	95.5	
3	CCS	07/01/06 10:09	0.001	100.1	100.1	99.6	100.1	99.5	
}	H7N2A	07/01/06 10:13	101.3	102.5	101.4	101.7	101,4	101.9	
}	H7N2E	07/01/06 10:16	100.2	100.3	100.2	39.6	100,4	100.0	
	H7N2F	07/01/06 10:20	101.2	102.6	101.3	101.7	101,4	102.0	
. }			·····	}					•

32 H7N19

34 CCB

COV

33

07/01/06 10:27

07/01/06 10:31

07/01/06 10:33

101.6

8.08

99.6

103.8

5.88

100.5

101.3

93.4

100.1

102.7

8.88

99.9

101.2

92.7

100.0

102.7

96.3

99.8

CALIBRATION CHECK SUMMARY

Method: 6020	Instrument: MO1	Batch: 060707A1		
Sample IO	Туре	File - Sequence	Analyzed Date	0
cv	ICV	060707A1, 5	07/07/2008 11:20:01	Ε
CB	ICB	060707A1, 6	07/07/2006 11:24:09	Ē
CSA	ICSA	060707A1, 7	07/07/2006 11:28:17	Ē
CSAB	ICSAB	060707A1, 8	07/07/2006 11:32:22	
CCV 1	CCV	080707A1, 10	07/07/2006 11:54:10	Ē
CB 1	COB	060707A1, 11	07/07/2006 11:58:18	Ē
COA S	CCV	060707A1, 12	07/07/2006 12:02:27	Ē
XCB 2	CCB	060707A1, 18	07/07/2008 12:06:85	
CV 3	CCV	060707A1, 24	07/07/2006 12:51:37	
CB 3	CCB	060707A1, 25	07/07/2006 12:55:45	
2CV 4	CCV	060707A1, 26	07/07/2006 12:59:53	$\tilde{\square}$
CB 4	CCB	060707A1, 27	07/07/2006 13:04:02	
CV 5	CCV	060707A1, 38	07/07/2006 13:49:36	
CB 5	CCB	060707A1, 39	07/07/2008 13:53:45	

CASN ISTD Name

LITHIUM6 Lithium-6

7440-74-8 Indium

7440-30-4 Thullum

7440-56-4 Germanium

CALIBRATION REPORT

Department: 120 (Metals)						Sot	irce: Ma	nEd
Sample: ICV (ICV)		Mu	lt: 1.00	Diff:	1.00	Divs:	1.00	0
instrument: ICPMS M01		Chann	el 261		***************************************		***************************************	
File: 060707A1 # 5		Method 5020_				Δ.	U 48	
Acquired: 07/07/2006 11:20:01	M01				90-110%			
Calibrated: 07/07/2006 11:11:41	1710.1				Units: ug/L			
CASN Analyte Name	M/S	Area	Found		Tre	 1 0	%R	Q
7440-41-7 Beryllium	8	32849	82,401	*****************	30,08		103	
7440-62-2 Vanadium	51	987864	81.193		80.08		101	
7440-47-3 Chromium	52	935541	83.218		80.00		104	
7439-96-5 Manganese	55	1403750	89,417		80.08		104	
7440-48-4 Cobait	59	1034475	83.826		30.08		105	
7440-02-0 Nickel	60	218324	83.886		80.08		105	
7440-50-8 Copper	65	212941	84.090		80.08	X	105	
'440-66-8 Zinc	68	82669	84.158		30.08	XO	105	
7440-38-2 Arsenic	75	204569	81.842		80.08	00	102	
7782-49-2 Selenium	82	18709	82.362		80.00		103	
439-98-7 Molybdenum	97	161008	82.076		80.00	10	103	
'440-22-4 Silver	107	380135	41.915		40.00	10	105	
'440-43-9 Cadmium	111	182913	82.294		80.00	K)	103	
440-39-3 Barium	135	131045	81,924		80.00	10	102	
7439-92-1 Lead	208	1762483	83.385		80.08	KÜ	104	

Area

531862

1086933

891895

633233

Amount

MS

6

72

115

169

Reviewed by: Date: 108 Reports Severn Trent Laboratories Version: 6.03.068

Page 2 of 15

Ø

 \boxtimes

 \boxtimes

F

Method: 6020 (SOP: SAC-MT-001			M01		Re	ported: 0	VK RE	6:52:30
Department: 120 (Metals)	**************************************		·····	<u></u>			Scarca	: MetEdil
Sample: ICB		Mi	ılt: 1.00	Diff:	1.	00 E		1,000
Instrument: ICPMS M01		Chan	nel 261				······	
Fife: 060707A1 # 6			16020_					
Acquired: 07/07/2008 11:24:09			01					
Calibrated: 07/07/2006 11:11:41		169				Units	: ug/L	
CASN Analyte Name	M/S	Area	Amount	***************************************		MOL	%RSD	Q
7440-41-7 Beryllium	9	4	-0.00209	***************************************	1.0	0.078	0.0	
7440-62-2 Vanedium	51	-21601	0.22744		10.0	3.1	0.0	
7440-47-3 Chromium	52	31735	~0.08877		2.0	0.92	0.0	
7439-96-5 Manganese	55	2179	-0.00371		1.0	0.083	0.0	
7440-48-4 Cobalt	59	105	0.00163		1.0	0.057	0.0	
7440-02-0 Nickel	60	159	-0.00860		2.0	0.098	0.0	
7440-50-8 Copper	85	248	-0.01398	Ant.	~~~			
7440-68-8 Zinc	68	1736	-0.56957	E 4.18.	5.0	1.0	0.0	
7440-38-2 Arsenic	75	15407	-0.27724		2.0	0.50	0.0	
7782-49-2 Selenium	82	1138	0.20905		2.0	1.7	0.0	
7439-98-7 Molybdanum	97	256	0.11509			***		
7440-22-4 Silver	107	105	0.00771		1.0	0.030	0.0	
7440-43-9 Cadmium	111	10	0.00223		1.0	0.074	0.0	
7440-39-3 Barium	135	171	0.00658		1.0	0.98	0.0	
7499-92-1 Lead	208	764	-0.00538		1.0	0.066	0.0	
CASN ISTD Name	M/S	Area	Amount			}		Q
LITHIUM6 Lithium-S	6	537662				7		N
7440-56-4 Germanium	72	1077467				1		Ø
7440-74-8 Indium	115	902246				₹		M
7440-30-4 Thidium	169	635179			A	MOL.	ş	Ø

NA See Data Tables For Air MOLS

Reviewed by: Date:

IDB Reports

Sevem Trent Laboratories

Version: 6,02,068

7440-66-6 Zinc

7440-38-2 Arsenia

7440-22-4 Silver

7782-49-2 Selenium

7440-43-9 Cadmium

7440-39-3 Barium

LITHIUMG Lithium-8

7440-74-8 Indium

7440-30-4 Thulium

7440-56-4 Germanium

7439-92-1 Lead

7439-98-7 Molybdenum

CASN ISTD Name

CALIBRATION REPORT

Department: 120 (Metals)						Sc	urce: M	letEdi
Sample: ICSA		Mi	ult: 1.0 0	Dilf:	00.1	Divs:	1.0	00
Instrument: ICPMS M01		Chan	nel 261		***************************************		****	
File: 060707A1 # 7		Method	d 6020					
Acquired: 07/07/2006 11:28:17 M01								
Calibrated: 07/07/2006 11:11:41				•	Į	Jnits: ug/l	.~	
CASN Analyte Name	M/S	Area	Found	******************	Ti	rue	%R	Q
7440-41-7 Beryllium	9	13	0.03344	***************************************	•		*	Ø
7440-62-2 Vanadium	51	-22566	-0.26560				•	Ø
7440-47-3 Chromium	52 .	49375	2.5838				94	***
7439-96-5 Manganese	55	33207	2.2803				*	
7440-48-4 Cobalt	59	18113	1.7846				*	
7440-02-0 Nickel	60	6136	2.8114				*	
7440-50-8 Copper	65	1	-0.11073				*	

3185

14169

1006

1958

838

1318

16574

Area

388824

874037

797002

498227

3478213

1.7007

0.60125

0.68226

0.23789

0.50114

0.82593

0.95544

Amount

2164.6

68

75

82

97

107

111

135

208

M/S

8

72

115

169

2000.0

Date: Reviewed by: IDS Reports Sevem Trant Laboratories

> View Page 4 of 15

Version: 6.02,068

Ø

M

 \mathbb{Z}

Ø

Ø

 \boxtimes

 \boxtimes

Q

Ø

 \mathbb{Z}

 \square

M

7440-38-2 Arsenic

CALIBRATION DEPORT

Ø

			VALIBRATION REPORT					
Method: 6020 (SOP: SAC-MT-001)			/ 01:		Reported	i: 07/07/0	06 16:5	2:30
Department: 120 (Metals)					·····	So	urce: M	let Edi
Sample: ICSAB		Mu	lt: 1.00	Diff:	1.00	Divs:	1.0	
Instrument: ICPMS MO1		Chann	el 261					•••••••
File: 050707A1 #8		Method	6020					
Acquired: 07/07/2006 11:32:22	Mot							
Calibrated: 07/07/2006 11:11:41					υ	nits; ug/L	•	
CASN Analyte Name	M/S	Area	Found		Tn	ر	%B	Q
7440-41-7 Beryllium	9	27826	100.88		100.6	•••••	101	
7440-62-2 Vanadium	51	1017502	103,21		100.0		103	M M
7440-47-3 Chromium	52	944788	105.02		100.6		105	(M
7439-96-5 Manganese	55	1404961	103.62		100.6		104	M
7440-48-4 Cobalt	59	1051462	105.70		100.0		106	Ø
7440-02-0 Nickel	60	214574	102,31		100.0		102	83
7440-50-8 Copper	65	193461	94,807		100.0		94.8	8
7440-66-6 Zinc	68	75319	95.439		100.0	-	95.4	Ø

1440-38-2		75	209366	105.13	100.00	105	\boxtimes
7782-49-2	Selenium	82	21259	118,18	100.00	118	8
7439-93-7	Molybdenum	97	3647628	2307.3	2100.0	110	- EZI
7440-22-4	Silver	107	377632	46.568	50,000	93.1	M
7440-43-9		111	163786	98.565	100.00	98.5	Ø
7440-39-3	Barium	135	146806	102.67	100.00	103	2
7439-92-1	Lead	208	1675201	101.79	100.00	102	Ø
CASN	ISTD Name	M/S	Area	Amount			O
LITHIUMS	Lithium-8	6	367843	***************************************		•••••••••••	<u> </u>
7440-56-4	Germanium	72	88988				X
7440-74-6	Indium	115	797418				Ø
7440-30-4	Thutlum	169	492996				8

209366

75

105.13

Reviewed by: Date: IDB Reports Sevem Trent Laboratories Version: 6.02.008

> View Page 5 of 15

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-801)	MOT		Reporte	d: 07/07/00	3 16:52:30
Department: 120 (Metals)			·	Sou	roe: MetEd
Sample: CCV1 (CCV)	Mult: 1.00	Oilf:	1.00	Divs:	1.000
Instrument: ICPMS M01	Channel 261				
File: 060707A1 # 10 Acquired: 07/07/2006 11:54:10	Method 6020_ Mo1				
Calibrated: 07/07/2006 11:11:41			{	Jnits: ug/L	

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Beryllium	9	38937	101,84	100,00	102	************
	Vanadium	51	1246060	98.678	100,00	98.7	
	Chromium	52	1148755	99.445	100,00	99,4	
7439-96-5	Manganese	58	1731197	99.587	100.00	89.8	
7440-48-4		59	1269709	101.12	100,00	101	
7440-02-0		60	273243	101,62	100.00	102	
7440-50-8		65	264421	101.08	100.00	101	
7440-86-6		68	100725	99.653	100,00	89.7	
7440-38-2		75	255171	99.613	100,00	99.6	
7782-49-2		82	29142	99.592-	100.00	99.6	
7439-98-7	Molyodenum	97	401806	198.24	200.00	99.1	
7440-22-4	Silver	107	465052	49.570	50,000	99.3	
7440-43-9		111	190371	89.248	100.00	99.2	
7440-39-3	Barium	135	163013	98.726	100,00	98.7	
7439-92-1	Lead	208	2182487	99.682	100,00	99.7	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUMS	Lithium-6	6	509969	·····	4 	*******	Ħ
7440-56-4	Germanium	72	1102491				Ø
7440-74-6	Indium	115	920746				Ø
7440-30-4	Thulium	169	640762				8

	Reviewed by: Date:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
808 Reports	Sevem Trent Laboratories	Version: 8 82.068

STL Sacramento BLANK REPORT Method: 6020 (SOP: SAC:MT-001) M01 Reported: 07/07/06 16:52:30

Department: 120 (Metals)

Source: MetEdit

Sample: CCB 1 Mult: 1.00 Diff: 1.00 Divs: 1.000 Instrument: ICPMS M01 Channel 261

CASN	Analyte Name	M/S	Area	Amount	AL	MDL	%RSD	Q
7440-41-7	Beryllium	9	3	-9.00227	1.0	0.078	0.0	
7440-62-2	Vanadium	51	-21618	0.26831	10.0	3.1	0.0	
	Chromium	52	32698	-0.08682	2.0	0.92	0.0	
7439-96-5	Manganese	58	2257	-0.00386	1.0	0.083	0.0	
7440-48-4	Cobalt	59	116	0.00223	1.0	0.057	0.0	
7440-02-0	Nickel	60	154	-0.01238	2.0	0.098	0.0	
7440-50-8	Copper	85	269	-0.00945		4.000	0.5	
7440-66-6	Zinc	68	1588	-0.78136	2 MDL 5.0	1.0	0.0	
7440-38-2	Arsenic	75	16680	0.00669	2.0	0.50	0.0	
7782-49-2	Selenium	82	1161	0.12459	2.0	1.7	0.0	
7439-98-7	Molybdenum	97	664	0.26018	*******	,,,	0.0	
7440-22-4	Silver	107	97	0.00848	1.0	0.030	0.0	
7440-43-9	Cadmium	111	17	0.00548	1.0	0.074	0.0	
7440-39-3	8erium -	135	176	0.00740	1.0	0.96	0.0	
7439-92-1	Lead	208	682	-0.01003	1.0	0.066	0.0	
CASN	ISTD Name	MS	Area	Amount				Q
LITHIUMS	Lithium-6	6	500011					<u> </u>
7440-56-4	Germanium	72	1117084					
7440-74-6	Indium	115	935658					X
7440-30-4	Thullum	169	651762					M

	Reviewed by: Date:	
IDS Reports	Seven Trent Lebondories	Version: 8,02,068

Calibrated: 07/07/2006 11:11:41

CALIBRATION REPORT

Units: ug/L

				CALIBHATION REPOR				
Method; 6020 (SOP; SAC-MT-001)	M01	originalis pokrajski		Reporte	d: 07/07/0	3 16:52:30		
Department: 120 (Metals)					Sou	rce: MetEdit		
Sample: CCV 2 (CCV)	Mult:	1.00	Diff:	1.00	Divs:	1.000		
Instrument: ICPMS MO1	Channel 2	61		***************************************				
File: 080707A1 # 12	Method 60	20_						
Acquired: 07/07/2006 12:02:27	M01							

,	***************************************	***************************************	·····			•	1
CASN	Analyte Name	M/S	Area	Found	True	%В	Q
7440-41-7	Beryllium	9	38687	101.45	100.00	101	
7440-82-2	Vanadium	51	1243153	99.174	100.00	99,2	
	Chromium	52	1144168	99.800~	100.00	99.8	
7439-96-5	Manganese	55	1739512	100.81	100.00	101	
7440-48-4	Cobalt	59	1283613	101.41	100.00	101	
7440-02-0		60	273281	102.40	100.00	102	
7440-50-8	Copper	65	263894	101.56	100.00	102	
7440-66-6	Zinc	68	100549	100.25	100.00	100	-
7440-38-2	Arsenic	75	253792	99.828	100.00	99,8	
7782-49-2	Selenium	82	23139	100,86	100.00	100	
7439-98-7	Molybdenum	97	399441	198.65	200,00	99.3	
7440-22-4	Silver	107	462380	49.751	50,000	99.5	
7440-43-9	Cadmlum	111	189953	99,762	100.00	99.8	
7440-39-3	Barium	135	161832	98.748	100.00	98.7	
7439-92-1	Lead	208	2134331	100,19	100.00	100	
CASN	ISTO Name	M/S	Area	Amount			Q
LITHIUMS	Lithium-6	8	508606	***************************************			<u> </u>
7440-56-4	Germanium	72	1094244				A
7440-74-6	Indium	115	913944				Ø
7440-30-4	Thulium	169	638032				Ø

	Reviewed by: Date:	
IOB Reports	Severn Trent Laboratories	Version: 6.02.066

7440-38-2 Arsenio

7440-22-4 Silver

7782-49-2 Selenium

7440-43-9 Cadmlum

7439-98-7 Molybdenum

BLANK REPORT

Department: 120 (Metals) Sample: CCB 2		M	ult: 1.00	Diff:	1.0	10 E	Source livs:	a: MatEd 1,000
Instrument: ICPMS M01 File: 060707A1 # 13 Acquired: 07/07/2006 12:06:35		Method	nel 261 d 6020_			·	••••••	
Calibrated: 07/07/2006 11:11:41			-			Units	: ug/L	
CASN Analyle Name	M/S	Area	Amount		RL	MDL.	%RSD	ς
7440-41-7 Beryllium	9	3	-0.00249	••••••	1.0	0.078	0.0	
7440-62-2 Vanadium	51	-27762	-0.18116		10.0	3.1	0.0	
7440-47-3 Chromium	52	33020	-0.05895		2.0	0.92	0.0	
7439-96-5 Manganese	55	2359	0.00190		1.0	0.063	0.0	
7440-48-4 Cobalt	59	119	0.00244		1.0	0.057	0.0	
7440-02-0 Nickel	60	170	-0.00872		2.0	0.098	0.0	
7440-50-8 Copper	65	263	-0.01188	ZHOL			5,0	
7440-68-6 Zinc	68	1864	-0.70614	en to be	5.0	1.0	0.0	
TARR DO D. Announce	****						V	

		(1)	9	0.00.140	L.V	U.U/4	0.0	
7440-39-3		135	175	0.00641	1.0	0.98	0.0	
7439-92-1	Lead	208	681	-0.01019	1.0	0.066	0.0	
CASN	ISTD Name	M/S	Area	Amount				0
LITHIUMS	Lithium-6	8	510968			***************************************	~ ~~~~~	- Ö
7440-56-4	Germanium	72	1117698					Ø
7440-74-6	Indium	115	938842					8
7440-30-4	Thulium	169	654031					ξ.Χ.

18645

1144

556

124

-0.00490

0.04318

0.25641

0.00931

8.00143

2.0

2.0

1.0

1.0

0.50

1.7

0.030

0.074

0.0

0.0

0.0

0.0

75

82

97

107

111

Reviewed by: Date: IDB Reports Severn Trent Laboratories Version: 6.02.068

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001) MOT Reported: 07/07/06 16:52:30 Department: 120 (Metals) Source: MetEdit Sample: CCV3 (CCV) Mult: 1.00 Diff: 1.00 Divs: 1.000 Instrument: ICPMS MO1 Channel 261 File: 060707A1 # 24 Method 6020_ Acquired: 07/07/2006 12:51:37 MO1

Calibrated: 07/07/2006 11:11:41

Units: ug/L

			*****		*****		
CASN Ana	alyte Name	M/S	Area	Found	True	. %R	Q
7440-41-7 Ber	yllium	9	39538	101.17	100.00	101	
7440-62-2 Van	adium	51	1226648	98.519	100,00	98.5	
7440-47-3 Chr	omium	52	1128288	99.050	100.00	99.1	
7439-96-5 Mar	nganese	55	1715679	100.09	100,60	100	
7440-48-4 Cob	alt	59	1261052	100.28	100.00	100	
7440-02-0 Nici		60	266281	100.44	100.00	100	
7440-50-8 Cop	per	65	258190	100.09	100,00	100-	
7440-68-6 Zino	;	68	100173	100.53	100.00	101	
7440-38-2 Arse	enic	75	250437	99.110	100.00	99.1	
7782-49-2 Sele	enlum .	82	22878	99,881	100.00	89.8	
7439-98-7 Mol	ybdenum	97	394214	197.25	200.00	98.6	
7440-22-4 Silve	er	107	455256	49.374	50.000	98.7	
7440-43-9 Cad	mium	111	186211	98.575	100.00	98.6	
7440-39-3 Bari	นท	135	159038	97.821	100.00	97.8~	^
7439-92-1 Leas	4	208	2112387	99.078	100.00	99.1	
CASN IST	D Name	MS	Area	Amount			Q
LITHIUM6 Lithi	um-6	6	521154		***************************************		Ø
7440-56-4 Gen	manium	72	1087108				82
7440-74-6 India	um	115	908846				\mathbf{Z}
7440-30-4 Thu	lium	169	638597				<u> </u>

	Reviewed by:	Date:	
OS Reports	Seven West Laboratories		Version: 6.02.068

STL Sacramento	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				E	BLAN	IK RE	PORT
Method: 6020 (SOP: SAC-MT-001)			M01		Repor	ted: 07	7/07/08	6:52:30
Department: 120 (Metals)			***************************************		••••••		Source	: MetEdit
Sample: CCB 3		Mı	dt: 1.00	Diff:	1.00	D	ivs:	1.000
Instrument: ICPMS M01		Chanr	nel 261			***************************************	***************************************	
File: 060707A1 # 25		Method	3 6020					
Acquired: 07/07/2006 12:55:45			01					
Calibrated: 07/07/2006 11:11:41						Units:	ug/L	
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD	Q
7440-41-7 Beryllium	9	3	-0.00257		1.0	3.078	0.0	
7440-62-2 Vanadium	51	-21192	0.28391	1	0.0	3.1	0.0	
7440-47-3 Chromium	52	33594	0.05408		2.0	0.92	0.0	
7439-98-5 Manganese	55	2248	-0.00169		1.0	2.083	0.0	
7440-48-4 Cobalt	59	160	0.00585		1.0	0.057	0.0	
7440-02-0 Nickel	60	162	-0.00813		2.0 (880.0	0.0	
7440-50-8 Copper	65	267	-0.00803	1/Th. \				
7440-66-6 Zinc	68	1423	-0.91543	ZMDL	5.0	1.0	0.0	
7440-38-2 Arsenic	75	15931	-0.15591		2.0	0.50	0.0	
7782-49-2 Selenium	82	1128	0.08902		2.0	1.7	0.0	
7439-98-7 Molybdenum	97	501	0,23476					
7440-22-4 Silver	107	146	0.01205			0.030	0,0	
7440-43-9 Cadmium	111	18	0.00607			1.074	0.0	
7440-39-3 Barium	135	177	0.01108			0.96	0.0	
7439-92-1 Lead	208	692	-0.00897		1.0 0	.066	0.0	

CASN	ISTD Name	M/S	Area	Amount	Q
	Lithium-6	8	518186	***************************************	 E
7440-56-4	Germanium	72	1094036		Ø
7440-74-6	Indium	115	910545	• • •	M
7440-30-4	Thulium	169	639591		8

Date: Reviewed by: IDB Reports Sevem Trent Laboratories

> View Page 11 of 15

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	Mo1		Reporte	d: 07/07/0	3 16:52:30
Department: 120 (Metals) Sample: CCV 4 (CCV)			***************************************	Sou	rce: MetEd
Sample: CCV 4 (CCV)	Mult: 1.00	Dilf:	1.00	Divs:	1.000
Instrument: ICPMS M01 File: 060707A1 # 26	Channel 261 Method 6020			***************************************	
Acquired: 07/07/2006 12:59:53 Calibrated: 07/07/2006 11:11:41	Mo1		ą.	Jnits: ug/L	

CASN	Analyte Name	M/S	Area	Found	True	%A	۔۔۔۔۔ Ω
	Beryllium	9	39516	100.82	100,00	101	*********
	Vanadium	51	1237705	99.832	100.00	99.8	
	Chromium	52	1128228	99.507	100.00	99.5	
	Manganese	55	1713355	100.41	100.00	100	
7440-48-4	• •	59	1260840	100.72	100,00	101	
7440-02-0		60	267530	101.37	100.00	101	
7440-50-8	Copper	65	257216	100.17	100.00	100	
7440-66-6	Zinc	68	99211	100.02	100.00	100	
7440-38-2	Arsenio	75	250230	99,513	100.00	99.5	
7782-49-2		88	22816	100.05	100.00	100	
	Molybdenum	97	394681	198.38	200.00	99.2	
7440-22-4	Silver	107	454508	49.449	50.000	98.9	
7440-43-9	Cadmium	111	186617	99.052	100.00	99.1	
7440-39-3		135	159250	98.259	100.00	99,3	
7439-92-1	Lead	208	2107649	89.839	100.00	99.8	
CASN	ISTD Name	M/S	Area	Amount			Q
UTHIUM6	Lithlum-6	6	522712				- E
7440-56-4	Germanium	72	1082054				8
7440-74-6	Indium	115	903790		•		82
7440-30-4	Thulium	169	632300				Ø

٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠		
	Reviewed by: Date:	
C		
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

BLANK REPORT

				Sou	rce: MetEd
. Mult:	1.00	Dilf:	1.00	Divs:	1.000
	Channel 2 Method 60	Channel 261 Method 6020_	Channel 261 Method 6020	Channel 261 Method 6020	Mult: 1.00 Dilf: 1.00 Divs: Channel 261 Method 6020

CASN	Analyte Name	M/S	Area	Amount	AL	MDL	%RSD	Q
7440-41-7	Beryllium	9	8	0.00451	1.0	0.078	0.0	
7440-62-2	Vanadium	51	-26355	-0.12952	10.0	3.1	0.0	
7440-47-3	Chromium	52	34450	0.13567	2.0	0.85	0.0	
7439-96-5	Manganese	55	2315	0.00242	1.0	0.083	0.0	
7440-48-4	Cobait	59	167	0.00646	1.0	0.057	0.0	
7440-02-0		60	181	-0.00092	2.0	0.098	0.0	
7440-50-8	Copper	65	279	-0.00371	MOL	41000	0.0	
7440-66-6	Zinc	68	2490	0.16959	5.0	1.0	0.0	
7440-38-2	Arsenic	75	16262	-0.01140	2.0	0.50	0.0	
7782-49-2		82	1132	0.10898	2.0	1.7	0.0	
7439-98-7	Molybdenum	97	495	0.23250		***	• • • • • • • • • • • • • • • • • • • •	
7440-22-4	Sliver	107	161	0.01884	1,0	0.030	0.0	
7440-43-8	Cadmium	111	15	0.00486	1.0	0.074	0.0	
7440-39-3	Barium	135	196	0.02225	1.0	0.98	0.0	
7439-92-1	Lead	208	779	-0.00493	1.0	0.068	0.0	
CASN	ISTD Name	M/S	Area	Amount				Q
LITHIUME	Lithium-6	6	511418	***************************************	***************************************	······································	•••••	<u></u>
7440-56-4	Germanium	72	1092817					2
7440-74-6	Indium	115	911570		-1 v			Ø
7440-30-4	Thulium	169	639618					1

IDE Reports	Severn Trent Laboratories	Version: 6.02.088

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	Mot			Reporte	d: 07/07/06	16:52:30
Department: 120 (Metals)					Sou	rce: MetEdit
Sample: CCV 5 (CCV)	Mult:	1.00	Diff;	1.00	Divs:	1.000
Instrument: ICPMS M01 File: 060707A1 #38	Channel 2 Method 60	. •		•		

File: 060707A1 # 38 Method 6i Acquired: 07/07/2006 13:49:36 M01 Calibrated: 07/07/2006 11:11:41

Units: ug/L

***************************************			······································		***********************	
CASN Analyte Name	MS	Area	Found	€unT	%B	C
7440-41-7 Beryllium	9	40937	97.110	100.00	97.1	
7440-62-2 Vanadium	51	1215595	99.320	100.00	99.3~	,
7440-47-3 Chromium	52	1125318	100.56	100.00	101	
7439-96-5 Manganese	55	1684145	99.969	100.00	100	
7440-48-4 Cobalt	59	1235161	99,941	100.00	99.9	
7440-02-0 Nickel	60	260379	99.924	100.00	99.9	
7440-50-8 Copper	65	253111	99.837	100.00	99.8	
7440-66-6 Zina	68	97762	99.816	100.00	89.8	
7440-38-2 Arsenic	75	243268	97.881	100.00	97.9	
7782-49-2 Selenium	82	22090	98.014	100.00	98.0	
7439-98-7 Molybdenum	97	386079	196.55	200.00	86.3 ~~	
7440-22-4 Silver	107	443045	49.036	50.000	98.1	
7440-43-9 Cadmium	111	182755	98.732	100.00	98.7	
7440-39-3 Barium	135	157225	98,688	100,00	98.7	
7439-92-1 Lead	208	2126786	99.070	100.00	99.1	
CASN ISTD Name	M/S	Area	Amount	100,00	\$3.1	~.
LITHIUM6 Lithium-6	6	562235	FNRVOR			<u>Q</u>
7440-56-4 Germanium	72					
7440-74-6 Indium	115	1068330				Ø
7440-30-4 Thullum		888365				\mathbb{Z}
CHANGAM HIRRING	169	642994				Ø

	Provioused for	
	Da.	18.
103 Reports	Sevem Trent Laboratories	Vension: 5.02.568

STL Sacramento						BLA	NK RE	:PORT
Method: 6020 (SOP: SAC-MT-00)	Ď.		Mot		Ą		07/07/06	
Department: 120 (Metals)	····	·····				i	····	
Sample: CCB 5		M	luit: 1.00	Diif:				e: MetEdit
Instrument: ICPMS M01				20331.	··············		Divs:	1.000
File: 060707A1 # 39			nel 261					
Acquired: 07/07/2006 13:53:45			d 6020_					
Calibrated: 07/07/2006 11:11:41		ħ.	101					
Ommoresed, 0770772006 11;11:43			•			Unit	ts: ug/L	j
CASN Analyte Name	M/S	Area	Amount	****	RL	MOL	%RSD	······································
7440-41-7 Beryllium	9	3	-0.00408			•••••	*	
7440-62-2 Vanadium	51	-20306	0.32946		1.0	0.078	*****	
7440-47-3 Chromium	52	34437	0.18469		10.0	3,1		
7438-96-5 Manganese	55	2255	0.00107		5.0	0.92	7.7	
7440-48-4 Cobalt	59	208	0.00899		1.0 1.0	0.088	0,0	
7440-02-0 Nickel	60	178	-0.00089		2.0	0.057	0.0	
7440-50-8 Copper	65	278	-0.00195	A. .		0.098	0.0	
7440-66-6 Zinc	68	1455	-0.85813	ZMDL	~ 5.0	٠.		
7440-38-2 Arsenic	75	15224	-0.94264	•	2.0	1.0 0.50	0.0	
7782-49-2 Selenium	82	1059	-0.14952		2.0	1.7	0.0	
7439-98-7 Molybdenum	97	450	0.21380		2.57	1.3	0.0	
7440-22-4 Silver	107	154	0.01329		1.0	0.030	~ ^	
7440-43-9 Cadmium	111	19	0.00725		1.0	0.074	0.0	
7440-39-8 Barlum	135	184	0.01809		1.0	0.074	0.0	
7439-92-1 Lead	208	730	-0.00724		1.0	0.086	0.0	
CASN ISTD Name	M/S	Area	Amount		,,,,,,	0,000	0.0	
LITHIUM6 Lithium-6	6	559947		····	·		······································	Q
7440-56-4 Germanium	72	1075312						Ø
7440-74-8 Indium	115	891364						Ø
MARATO A Thollow								Ø

- 【 19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
and the first of the control of the	
). (SVGVGL(QV.))\\	
8762 Danvide	
Souper Trank Salvastivian	
Severn Trent Laborativies	Standard Color Care

v Page 15 of 15

Version: 6.02.068

 \boxtimes

Ø

169

7440-30-4 Thullum

RUN SUMMARY

F2.1355.36575 15.5		* 1014 (3(3)*)14] [1
Melhod:	6020 (SOP: SAC-MT-001) Instrument: M01	Reported: 07/07/06 16:51:58
File ID:	060707A1	Anglust innah

)-#E	IU: 0607	07A1				Analyst: i	ionesb	
	Sample IC) Lot No.	Batch		DF	Analyzed Date	Comment	Q
1	H7N1L n.i.	G6F190128-1	6180323	2A	1.0	07/07/06 10:54		
2	·				3.0	07/07/06 11:07	***************************************	
3	Blank				1.0	07/07/06 11:11		
4	Standard i				1.0	07/07/06 11:15	· · · · · · · · · · · · · · · · · · ·	
5	ICV -				1.0		·····	
6	1C8 ~				1.0	07/07/06 11:24	······	
7	ICSA-				0.1	07/07/08 11:28		
8	ICSAB-			7	1.0	07/07/06 11:32		
9	Rinse			1	1.8	07/07/06 11:50		
10	CCV 1~			1	1.0	07/07/06 11:54		
11	CCB 1			1	1.0	07/07/06 11:58	***************************************	
12	CCV 2-				1,0	07/07/06 12:02	·····	
13	CCB 2 -			1	1.0	07/07/06 12:06		
14	H8F1AB-	G6F290000	6180323	2A	1.0		······································	
15	H8F1AC-	G6F290000	6180323	2A	1.0	07/07/06 12:14		
18	H8F1A1	G6F290000	6180323	2A	1.0	07/07/06 12:18	······································	
17.	H7N1L-	G6F190128-1	6180323	2A	1.0	07/07/06 12:22		
18	H7N1LP5-	G6F190128	6180323	-	5.0	07/07/06 12:27		
18	H7N1LZ-	G6F190128-1	6180323	1	1.0	07/07/06 12:81		
20	H7N1M-	G6F190128-2	6180323	2A	1.0	·····	······································	
21	H7N1N-	G6F190128-3	6180323	SA	1.0	07/07/06 12:39		
22	H7N1P-	G6F190128-4	6180323	2A	1.0	07/07/06 12:43		
23	H7N1T ~	G6F190128-5	6180323	ZA ZA	1.0	07/07/06 12:47		
24	CCV3-			+=-	1.0	07/07/06 12:51	********	
25	CCB 3~	<u> </u>		1	1.0	07/07/06 12:55	······································	
28	CCV 4-	<u> </u>		╂──┼─	1.0	07/07/06 12:59		
27	CCB 4			 	1.0	07/07/08 13:04		
28	H7N1W~	G6F190128-6	6180323	24	1.0	07/07/06 13:08		
29	H7N10-	G6F190128-7	6180323	2A	1.0	07/07/06 13:12		
30	H7N11 ~	G6F190128-8	6180323	2A	1.0	07/07/06 13:16		
31	H7N14	G6F190128-9	6180323	2A	1.0	07/07/06 13:20		
32	H7N16	G6F190128-10	6180323	2A	1.0	07/07/06 13:24		
33	H7N17_	G6F190128-11	6180323	2A	1.0	07/07/96 13:28	······································	
- 3	H7N19 -	G6F190128-12	6180323	ZA	1.0	07/07/06 13:32		
	H7N2A	G6F190128-13	6180323	2A	1.0	07/07/06 13:37	•••••••••••••••••••••••••••••••••••••••	
- []	H7N2E~	G6F190128-14	6180323	2A	1.0	07/07/06 13:41		
- " "	H7N2F~	G6F190128-15	6180323	2A	1.0	07/07/06 13:45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
38	CCV 5-	1	12.000		1.0	07/07/06 13:49		
į	CCB'5	<u></u>	·	 	~~}	07/07/08 13:53		
)	3			MXYWYSUM SWOOD I		1.1.5

INTERNAL STANDARD SUMMARY

Method: 6020 (SOP: SAC-MT-001) M01 (M01) Reported: 07/07/06 16:51:58

File ID: 060707A1		Analyst: ionesb	ch .				
	# Sample If	O Analyzed Date	Germanium	Indium	Lithium-6	Thullum	Q
	1 H7N1L n.i.	07/07/06 10:54	0.	1 0	.11		
:	2 Rinse 3X	07/07/06 11:07	100.			}	·0 [
;	3 Blank	07/07/06 11:11	100.				.5 🗆
٥	4 Standard1	07/07/08 11:15	97.0	~~~~	~~	***	O.
å	3 ICV	07/07/06 11:20	96.0	~		***}	9 2
	S ICB	07/07/08 11:24	97.0	}	·	~ 	8 🖾
7	/ ICSA	07/07/06 11:28	78.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mfm		1
8	ICSAB	07/07/08 11:32	77.4		~}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		9 1
S	Rinse	07/07/08 11:50	101.0		~		1 🖾
10	CCV1	07/07/06 11:54	99.3		~	~ 	~~~
13	CCB 1	07/07/06 11:58	100,6		}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 2
12	CCV 2	07/07/06 12:02	98.5				~~i
13	CCB 2	07/07/06 12:06	100.6				90
14	HSFIAB	07/07/06 12:10	100.2	£	·	•}	~~ `
15	H8F1AC	07/07/06 12:14	98.1	103.3			کب
16	HBF1AL	07/07/06 12:18	96.5		·	·	2
17	H7N1L	07/07/08 12:22	97.6			-{	w.
18	H7N1LP5	07/07/05 12:27	97.5		·		٠.
19	H7N1LZ	07/07/05 12:31	96.2		÷		2
20	H7N1M	07/07/06 12:35	95.7	***************************************		ļ	· 1
21	H7N1N	07/07/06 12:39	97.6	99.5		}	~
22	H7N1P	07/07/06 12:43	97.7	8,99		·	- 5
23	H7N1T	07/07/06 12:47	97.4	100.5	······	}	<i>.</i> .
24	CCV 3	07/07/06 12:51	97.9	99.9	}-~		4
25	CCB 3	07/07/08 12:55	98.5	97.7	100.8		į.
26	GCV 4	07/07/06 12:59	97.4	98,1	100.2		₹
27	CCB 4	07/07/06 13:04	88,4	97.4	. 101.1	97.6	4
28	H7N1W	07/07/06 13:08	~~~~~	98.2	98.9	98.8	Ø
29	H7N10	07/07/06 13:12	100.2	102.6	99.7	103.2	Ø
30	H7N11	07/07/06 13:16	99.8	102.5	98.6		Ø
31	H7N14	07/07/06 13:20	99.2	101.3	99.7	102.6	
32	H7N16	07/07/06 19:24	98.5	101.6	102.7	102.5	
33	H7N17	07/07/06 13:28	96.7	100.9	103.4	102.8	
34	H7N19	07/07/06 13:32	97.2	89.3		101.3	
35	H7N2A	07/07/06 13:37	97.2	100.1	106,9	103.1	
	H7N2E	07/07/08 13:41	97.4	99.0	105.3	102.1	
3	H7N2F	07/07/06 13:45	·	100.4	103.5	102.5	
38	CCV 5	07/07/06 13:49	98.2	101.2	102.5	109.1	
39	CCB 5	07/07/06 13:53	96.2	95.7	108.7	99.3	
}		w//0///00 10/000	96.88	96,1	108.3	98,8	Ø

S	TL.	Sacramento
•	₹ ‱	~~~~~

·····		· ·		Cold Vapor A	·(^)			Instrume	nt: STI	L2 (H03)		Reported: 07/03/06	13:08:04
	ience: 3(Sample ID	JUNO6Z	Lat No.	Date: 06/30			-	merrittn			icy:	CALICCV:	
~~~~			LULINO,	Batch	Matrix	Raw	DF	Result	Units	%R	Analyzed Date	Comment	(
	ICV	= 2.00	******************			1.95	1.0	1.95	ug/L	97.5%	-06/30/06 15:34	***************************************	
3.50	ICB -		·			-0.01	1.0	-0.01	ug/L	1	06/30/06 15:38	······································	
43 43	CUV	≈ 5.00	······			4.99	- 1.0	4.99		99.8%	06/30/08 15:55		
20	CC8~		····		-	-0.02	1.0	*		-	06/30/06 15:57	waa	
29	ccv	= 5.00	~~~~			5.02	~ 1.0	5.02		100 4%	-06/30/06 15:14		1
30	CCB~					-0.01	1.0	-0.01		100.970	06/30/06 16:14	······································	

1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	DIM CHROSON
1	Method: CVH	2 . Marrie or Alarmin be	. 2 ⁹⁵ γ ω € -3. Ν. €	Installation of the Company of the C	NOW SOMMARY
i					
١	·		***************************************	and amount of the (400)	Reported: 07/03/05 13:07:56
5	Sequence	30 Binday	M 4 MAINTAGE	user content. 2.175 (403)	

u		JUN06Z	Date: 06/30	/U6 15:15	۵	nalyst:	merrittn			ICV:	CAL/CCV:	
	Sample ID	Lot No.	Batch	Matrix	Raw	DF	Result	Units	; %R	Analyzed Date	Comment	
3	Std01Rep1				0.00	1.0	0.00	lug/L			0.000000000000000000000000000000000000	
2	Std02Rep1	= 0.200			0.00	1.0	~~~~~~~~	ug/L		06/30/06 15:15	~	
3	Std03Rep1	≈ 0.500		***************************************	0.00	1.0	~~~~~~~	ug/L	- <del> </del>	06/30/06 15:17		
4	Std04Rep1	= 1.00		•••••••••••••••••••••••••••••••••••••••	0.00	1.0	***************************************	ug/L	<del></del>	06/30/06 15:19		
S	Std05Rep1	≈ 5.00		······································	0.00	1.0		ug/L	<del></del>	06/30/06 15:21	·	
6	Std06Rep1	= 10.0			0.00	1.0	**************	ng/L		06/30/06 15:23		
7	ICV~	= 2.00		•••••••••••••••••••••••••••••••••••••••	1.95	1.0		ug/L	<del> </del>	06/30/06 15:25		
ŝ	ICB			***************************************	-0.01	1.0			97.5%			
9	HEKONB.	G6F300000	6181490		-0.01	1.0	-0.01		<b></b>	06/30/06 15:36		
10	H8KDNC~	G6F300000 = 1.80	6181490		0.98	1.0	-0.01			06/30/06 15:37		~~~~
11	H8KONL-	G6F300000 = 1,80	5181490		0.96	~ <del></del>	0.58	***************************************	32.5%	~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~		
12	H7N1L	G6F190128-1	6181490	AIR	~~~~	1.0	0.58		32.1%	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	
3	H7N1M -	G6F190128-2	6181490	AIR	0.09	1.0	0.05	~~~~		06/30/08 15:43		~~~~~~
4	H7N1N-	G6F190128-3	6181490	AIR	0.08	1.0	0.05	~~~~~		06/30/06 15:46		
5	H7N1P	G6F190128-4	6181490	AIR	0.09	1.0	0.06			06/30/06 15:46	***************************************	
6	H7N1T,_	G6F190128-5	6181490	AIR	0.11	1.0	0.07			06/30/06 15:48		}
7	H7N1W-	G8F190128-5	6181490	<u>-</u>	0.10	1.0	0.06			06/30/06 15:50	***************************************	
8	H7N10 -	G6F190128-7	6181490	AIR	0.10	1.0	90.0	·		06/30/06 15:52		] [
9	CCV-	= 5.00	0101490	AIR	0.14	1,0	0.09			06/30/08 15:53	***************************************	
Ç.	CCB_		ļļ		4.98	1.0	4.99	Jg/L	99.8%	06/30/06 15:55	***************************************	
- 3	H7N11~	G6F190128-8	CARRAGO		-0.02	1.0	-0.02			06/30/06 15:57		£
2	H7N14_	G6F190128-9	6181490	AIR	0.13	1.0	0.08	ig/L		06/30/06 15:59	······	[
,	H7N16	G6F190128-10	6181490	AIR	0.10	1.0	0.08	g/L		06/30/06 16:00		
•	H7N17	G6F190128-11	6181490	AIR	0.12	1.0	0.07 u	ig/L	***************************************	06/30/06 16:02	·	
	H7N18,_	G6F190128-12	6161490	AIR	0.14	1.0	0.08 u	g/L		06/30/06 16:04		[ [
*	H7N2A_	***************************************	6181490	AIR	0.14	1.0	0.08 u	g/L	****	06/30/06 16:08	· · ·	C
}-		G6F190128-13	6181490	AIR	0.15	1.0	0.09 u	·		06/30/06 16:08		[
· }-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	G6F190128-14	6181490	AIR	0.04	1.0	0.02 u	~	···	06/30/06 16:10		
- 1∼	~~~~~	G6F190128-15	6181490	AIR	0.05	1.0	0.03 u			06/30/06 16:12		
}		= 5.00			5.02	1.0	5.02 u		00.4%			
1	ce				-0.01	1.0	-0.01 us		~4.77 (0)	08/30/06 16:14 06/30/06 16:16		

#### METHOD BLANK REPORT

#### TOTAL Metals

Client hot #...: G6F190128

Matrix..... AIR

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION WORK ANALYSIS DATE ORDER #
MB Lot-Sample	#: G6F29000	0-323		
Arsenic	ND	3.6 ug Dilution Pactor: 1	SW846 6020	06/28-07/07/06 H8F1A1AC
Barium	ND	120 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AD
Beryllium	ND	1.2 ug Dilucion Factor: 1	SW846 6020	05/28-07/07/06 H8F1A1AE
Cadmium	ND	1.2 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AF
Chromium	ND	12.0 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AH
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AG
Copper	ND	6.0 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AJ
bead	ND	1.2 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AN
Manganese	3.545	6.0 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 HBFIAIAK
Molybdenum	ND	6.0 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AL
Nickel	ND	6.0 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AM
Selenium	ND	3.6 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AP
Silver	ND	1.2 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AA
Vanadium	MD	12.0 ug Dilution Factor; 1	SW846 6020	06/28-07/07/06 H8F1A1AQ
Zinc	ND	24.0 ug Dilution Factor: 1	SW846 6020	06/28-07/07/06 H8F1A1AR

(Continued on next page)

#### METHOD BLANK REPORT

#### TOTAL Metals

Client Lot # ...: G6F190128

Carrie Mari 4.	* : REDETABLE	88			Matrix AIR
PARAMETER	RESULT	REPORTIN	IG UNITS	METHOD	FREPARATION~ WORK AMALYSIS DATE ORDER #
MB Lot-Sample	#: G6F29000	B-378 Brown F	ii danta		
Aluminum	D	240 Dilucion Fac	ug	SW846 6010	B 06/28-07/01/06 H8F171AA
Calcium	ND	3000 Dilution Fac	ug tor: 1	SW846 6010	B 06/28-07/01/06 H8F171AC
Iron	20.3-8-	120 Dilution Fac	ug con: I	S <b>W84</b> 6 6010	B 06/28-07/01/06 H8F171AD
Magnesium	ND	600 Dilution Fact	ug zor: 1	SW846 6010	B 06/28-07/01/06 H8F171AB
Sodium	ND	6000 Dilution Fact	ug tor: 1	SW846 6010	B 06/28-07/01/06 H8F171AF
MB Lot-Sample	#: G6F30000	l-190 Dran D	Newson 22	C202400	
Mercury	ND	0.12 Dilution Fact	na	SW846 7471	A 06/29-06/30/06 H8KDN1AA

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

B Estimated result. Result is less than EL.

STL Sacramento				SA	MPLI	e ရည	IK#
Method: 6010	PE ICP2			Reported	•••		
Department: 120 (Metals) Sample: H7N1LZ						rce: OP	
Comple, HHYELL	Sp	ike Dilution:	1.00	Sample [	Offution:	1.00	
Instrument: PE 4300 File: JUL0106AX.csv # 14 Acquired: 07/01/2006 09:22:21	Method	nel 268 i 6010O	85-115%				
Calibrated: 07/01/2006 08:38:25	PE	Cbs			atrix: AIR ilts: mg/L		
CASN Analyle Name	Area	Amount	Sample-	~%Rec	Spike	Œłaa	ر د
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7439-89-6 Iron 7440-23-5 Sodium CASN ISTO Name		49.322 51.028 0.52637 2.3138 1.3490 1.9846 49.657 51.559	0.51050 0.25553 0.00729 0.27320 0.31210 0.31634 0.76882 0.77536	97.6 102 104 102— 104 107 97.8— 102	50.0 50.0 0.500 2.00 1.00 1.00 50.0	Flag	
A7440655 Y_Axial	Area	Amount	*				Q
R7440655 Y_Radial In_Axial in Axial In_Badial in Radial So_Axial Sc Axial Sc_Radial Sc Radial		93.635 96.292 92.835 98.624 94.441 97.325	-				

	•	 *	• • •	, and a second s
			Reviewed by:	Date:
ID8 Reports	•••••••••••••••••••••••••••••••••••••••	 		
			Sevem Trent Laboratories	Version; 6:02:068

View Page 1 of 1

SAMPLE SPIKE

Method: 6020 (SOP: SAC-MT-001) MO1 Reported: 07/07/06 16:52:21

Department: 120 (Metals)

Source: MetEdit

Sample: H7N1LZ

Spike Dilution:

1.00

Sample Dilution: 1.00

Instrument: ICPMS M01 File: 060707A1 # 19 Acquired: 07/07/2006 12:31:06

Channel 261 Method 6020_

86-115%

Matrix: AIR

Calibrated: 07/07/2006 11:11:41

M01 Units: ug/L

***************************************		~~~~~		······					
CASN	Analyte Name	M/S	Area	Amount	Sample ~	~%Rec.	Spike	Flag	Ω.
7440-41-7	Beryllium	9	72498	191,19~	0.00711	95.6~	200	·····	Ø
	Vanadium	51	2370682	191,77	2.6095	94.6	200		
	Chromium	52	2173788	196,93	0.68930	98.1	200		图
7439-96-5	Manganese	55	3554998	211.08	12.851	99.1	200		<b>M</b>
7440-48-4		59	2466440	199,49	0.38539	99.6	200		<b>M</b>
7440-02-0		60	527242	202,33	1,5788	100	200		8
7440-50-8	Copper	65	546513	215.61	14.620	100	200		<u>M</u>
7440-68-6	Zìnc	68	199866	206.45	6.4342	100	200		<b>S</b>
7440-38-2	Arsenic	75	459962	191.10	0.19933	95,4	200		
7782-49-2	Selenium	82	42423	192.81	0.52436	1.36	200		K
7439-98-7	Molybdenum	97	397248	202.15	0,45975	101	200		<u> </u>
7440-22-4	Silver	107	539409	57,493	0.02284	115	50.0		<u> </u>
7440-43-9	Cadmium	111	368898	191.92	0.04778	95.9	200		<b>M</b>
7440-39-3	Barium	135	332023	200.79	4.9221	97,9	200		<b>M</b>
7439-92-1	Lead	208	4318854	197.47	1.8084	97.8	200		82
CASN	ISTD Name	MS	Area	Amount					Q
LITHIUM6	Lithium-6	8	505725		~	•			<u> </u>
7440-56-4	Germanium	72	1088752						<b>S</b>
7440-74-6	Indium	115	922535						
7440-30-4		169	855222						21 121

Reviewed by: Date: **Ø8 Reports** Severn Trent Laboratories Version: 6.02,068

## LABORATORY CONTROL SAMPLE DATA REPORT

#### TOTAL Metals

Lot-Sample #...: G6F190128

Watrix..... AIR

York va to be exceeded	SPIKE	MEASUR		PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	•	UNITS	RECVRY	RPDer	METHO	Ð	ANALYSIS DATE	
Arsenic	240	223	ug	93mm		SW845	6020	06/28-07/07/06	
	240	225	ug	94	0.91	SW846	6020	08/28-07/07/08	
			Dilution Fac	tor: 1				, , , ,	
Barium	240	235	ug	98		SW846	5020	06/28-07/07/06	6380222
	240	237	પાલુ	99	1.1	SW846		06/28-07/07/06	
			Dilution Fed	tor: 1				***************************************	0.00023
Beryllium	240	225	ug	94		SW846	6020	06/28-07/07/06	6780323
	240	339mm	ug	36 m	1.8	SW846	6020	06/28-07/07/06	
			Dilution Fac	tor: 1				10,50 01,07,44	0200525
Cadmium	240	224	ug	93		SW846	6020	06/28-07/07/06	6146363
	240	227	ug	95	1.6	SW846		05/28-07/07/05	
			Dilution Fac	tor: 1				,, ,,,,,,	0.000025
Chromium	240	238	ug	99		SW846	6020	06/28-07/07/06	6180323
	240	238	αg	99	0.16	SW845	6020	06/28-07/07/06	
			Dilution Fact	ior: 1					•
Cobalt	240	240-	ug	100-		SW846	6020	06/28-07/07/06	6180323
	240	240	ug	100	0.04	SW846	6020	06/28-07/07/06	6180323
			Dilution Fact	or: 1					
Copper	240	243	ug	101		SW846	6020	06/28-07/07/06	6180323
	240	243	ug		0.02	SW846	6020	06/28-07/07/06	
			Dilution Fact	or: 1					
Lead	240	233	ug	97		SW845	6020	06/28-07/07/06	
	240	237	nd		1.6	SW846	6020	06/28-07/07/06	6180323
			Dilution Pact	or: 1					
Manganese	240	240	ug	100		SW846		06/28-07/07/06	6180323
	240	243	ug		0.99	SW846	6020	06/28-07/07/06	6180323
			Dilution Fact	or: 1					
Molybdenum		246	ug	103		SW846	6020	06/28-07/07/06	6180323
	240	247	ug		0.63	SW846	6020	06/28-07/07/06	6180323
		;	Dilution Fact	or: I					

(Continued on next page)

## LABORATORY CONTEOL SAMPLE DATA REPORT

#### TOTAL Metals

Lot-Sample #...: G6F190128

Matrix..... ATR

Parameter	SPIKE AMOUNT	MEASURED		PERCNT					PREP
Nickel	240	· ·	nits	RECVRY	RPD	METHO	<del>~~~~~~~</del>	ANALYSIS DATE	BATCH #
4144504	240	A	ià.	102			6020	06/28-07/07/06	
	2710		â	102	0.07	SW846	6020	06/28-07/07/06	6180323
		Dir	ation Fact	tor: 1					
Selenium	240	221 u	g	92		SW846	6020	06/28-07/07/06	6180393
	240	225 u	g	94	1.4	SW846	6020	06/28-07/07/06	
		Di.11	ition Pact	tor: 1				.,,,,,,,,,,,,,	
Silver	60.0	57.7 w u	g	96		SW846	6028	06/28-07/07/06	CINANA
	60.0	58.6 u	-	98	1.4	SW846		06/28-07/07/06	6100303
			rtion Fact	or: 1	-, -		0020	00/20-03/03/06	6780373
Vanadium	240	232 u	egr	97		SW846	6020	06/28-07/07/06	
	240	233 0.0		97	0.52	SW846		06/28-07/07/06	
		•	tion Fact	or; 1	*****			00120-01101100	5268323
Zinc	240	233 us	ı	96		SW846	6020	06/28-07/07/06	£20000
	240	233 us	•	97	0.66	SW846		06/28-07/07/06	
		•	tion Fact	or: 1		*	0000	00720-07707700	0.100.323
Aluminum	2400	2430- uc	1	101~		SW846	60108	06/28-07/01/06	6166666
	2400	2480~ uc	-	103		SW846		06/28-07/01/06	
		Dilu	- tion Fact	or: 1				00,20 07,02,00	OTOODE
Calcium	60000	58200 ug	ī	97		SW846	soiom	06/28-07/01/06	ET BUDGO
	60000	59100- uq				SW846		06/28-07/01/06	
		Dilu	tion Facto			~	* * * * * * * * * * * * * * * * * * * *	00/20 0//02/00	0100320
Iron	1200	1230 ug	I	103		SW846	6010B	06/28-07/01/06	6180328
	1200	1230 - ug	I	102-		5W846		06/28-07/01/06	
		Dilut	tion Facto	ox : 1.					
Magnesium	60000	60700- ug	ţ.	101		SW846	80108	06/28-07/01/06	6180328
	60000	61400- ug	•	102		SW846		06/28-07/01/06	
		Dilut	ion Pacto					and and and and and	
Sodium	60000	58300 ug		97		SW846	6010B	06/28-07/01/06	K180398 -
	60000	58500 ug		97-		6W846		06/28-07/01/06	
		~	ion facto		, ,			22, 20 0 : , 02, 00	

(Continued on next page)

## LABORATORY CONTROL SAMPLE DATA REPORT

### TOTAL Metals

Lot-Sample #...: G6F190128

Matrix..... AIR

PARAMETER Mercury	SPIKE AMOUNT 0.600 0.600	MEASURED AMOUNT 0.585-	UNITS  ug  ug  lution Fac		RPD METHOD SW846 7471A	REPARATION - ANALYSIS DATE 06/29-06/30/06 06/29-06/30/06	
		.33	ingrical test.	cor: r			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

## LABORATORY CONTROL SAMPLE EVALUATION REPORT

#### TOTAL Metals

Lot-Sample #...: G6F190128

Matrix.	•			•		٠		,	Ţ	AIR
---------	---	--	--	---	--	---	--	---	---	-----

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- PREP- ANALYSIS DATE BATCH #
Arsenic	93	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	94	(75 - 125) 0.91 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		
Barium	98	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	99	(75 - 125) 1.1 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		, , , , , , , , , , , , , , , , , , , ,
Beryllium	94	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	96	(75 - 125) 1.8 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		, , , , , , , , , , , , , , , , , , , ,
Cadmium	93	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	95	(75 - 125) 1.6 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		
Chromium	99	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	99	(75 - 125) 0.16 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		
Cobalt	100	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	100	(75 - 125) 0.04 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		
Copper	101	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	101	(75 - 125) 0.02 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Pactor: 1		
Lead	97	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	99	(75 - 125) 1.6 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		
Manganese	100	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	101	(75 - 125) 0.99 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		
Molybdenum	102	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	103	(75 - 125) 0.63 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		

(Continued on next page)

## LABORATORY CONTROL SAMPLE EVALUATION REPORT

### TOTAL Metals

Lot-Sample #: G6F190128		,	Matrix A	EE
-------------------------	--	---	----------	----

W-72 No. 10 A 00-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	PERCENT	RECOVERY RPD		PREPARATION- PREP-
PARAMETER	RECOVERY	LIMITS RPD LIMITS	METHOD	ANALYSIS DATE BATCH #
Nickel	102	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	103	(75 - 125) 0.07 (0-30)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		
Selenium	92	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	94	(75 - 125) 1.4 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		20,20 0,,0,,00 0200323
Silver	96	(75 - 125)	SW846 6020	05/20 07/07/07 07/22/2
	98	(75 ~ 125) 1.4 (0-20)	SW846 6020	06/28-07/07/06 6180323 06/28-07/07/06 6180323
		Dilution Factor: 1	24040 0020	00/20-0//0//06 6780333
Vanadium	97	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	97	(75 - 125) 0.52 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		00,20 07,07,00 02003X3
Zinc	96	(75 - 125)	SW846 6020	06/28-07/07/06 6180323
	97	(75 - 125) 0.66 (0-20)	SW846 6020	06/28-07/07/06 6180323
		Dilution Factor: 1		,,,,,,,,,
Aluminum	101	(75 - 125)	SW846 6010B	06/28-07/01/06 6180328
	103	(75 - 125) 2.1 (0-20)	SW846 6010B	05/28-07/01/06 6180328
		Dilucion Factor: 1		, , , , , , , , , , , , , , , , , , , ,
Calcium	97	(75 - 125)	SW846 6010B	06/28-07/01/06 6180328
	98	(75 - 125) 1.4 (0-20)	SW846 601.0B	06/28-07/01/06 6180338
		Dilution Factor: 1		
Iron	103	(75 - 125)	SW846 6010B	06/28-07/01/06 6180328
	102	(75 - 125) 0.19 (0-20)	SW846 6010B	06/28-07/01/06 6180328
		Dilution Factor: 1		
Magnesium	101	(75 - 125)	SW846 6010B	06/28-07/01/06 6180328
	102	(75 - 125) 1.2 (0-20)	SW846 6010B	06/28-07/01/06 6180328
		Dilution Factor: 1		
Sodium	97	(75 - 125)	SW946 6010B	06/28-07/01/06 6180328
	97	(75 - 125) 0.37 (0-20)	SW846 6010B	06/28-07/01/06 6180328
		Dilution Factor: 1		

(Continued on next page)

## LABORATORY CONTROL SAMPLE EVALUATION REPORT

#### TOTAL Metals

Lot-Sample #...: G6F190128

Matrix.... AIR

	PERCENT	RECOVERY	RPD		PREPARATION-	PREP-
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD	ANALYSIS DATE	BATCH #
Mercury	98	(75 - 125)		SW846 7471A	06/29-06/30/06	
	96	(75 - 125)	1.2 (0-20)	SW846 7471A	06/29-06/30/06	5 6181490
		Bilnti	ne Waster, 1			

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

## SERIAL DILUTION

Method:	6010	PE ICP2		***************************************	Reporte	d: 07/03/0	06 10:28	5:44
Departme	nt: 120 (Metals)					Sau	rce: OP	
Sample:	H7N1LP5	Se	rial Dilution:	5.00	Sample	Dilution:		* ******
•	nt: PE 4300	Chan	iel 268					
File: JUL	0108AX.csv # 13	Method	60100					
Acquired	: 07/01/2006 09:18:48		CP2		x -	Lastra war		
Calibrated: 07/01/2006 08:38:25		,	J. 2			latrix: AIF	•	
<u>f</u>					Ų	nits: mg/L	-	
CASN	Analyte Name	Area	Dilution	Sample ~	~%Diff.	MDL	Flag	Q
7440-70-2			0.52361	0.51050	2.57	0.75	NC	<u>~</u>
7439-95-4	Magnesium		0.26194	0.25553	2.51	0.081	NO	
7440-68-8	Zinc		0.01225	0.00729	67.9	0,08;	145	図
7429-90-5	Alumînum		0.25418	0.27820	6.96	0.034	NO	5779
7439-69-6			0.30944	0.31210	0.850	0.034	NC	M M
7439-89-6			0.31454	0.31634	0.568	0.012	NO	M m
7440-23-5			0.60086	0.76882	21.8	1.7	NC	<b>X</b>
7440-23-5	Sodium		1.0430	0.77536	34.5	1.7	NO	Ø
CASN	ISTD Name	Area	Amount		2.02	123	., .	
A7440655	Y_ Axial		99.470	·····	<b></b>	•••••	•••••	<u>Q</u>
R7440655	Y Radial		99.128					
In_Axial	in Axiai		99.298					8
in_Radial	In Radial		99.607					EX.
Sc_Axial			99.540					
Sc_Radial	Sc Radial		99.199					<u> </u>

^{*} Analyte not requested for this batch, no MDL

NC : Serial dilution concentration < 50 X MDL ~

E: Difference greater than Limit (10%)

4	 	***************************************	
		Reviewed by:	Date:
IDB Reports	 ~~~	Severn Trant Laboratories	Vanion 6 50 250

View Page 1 of 1

8(\$0,500.0 (motors V

STL Sacramento				SER	IAL DI	LUTI	ON
Method: 6020 (SOP; SAC-MT-001)		101		Reported	: 87/07/0	6 16:52	::07
Department: 120 (Metals)	***************************************		·····		Sot	ırce: Me	ئىنىن #Edit
Sample: H7N1LP5	Ser	ial Dilution:	5.00	Sample I	Dilution:	1.00	
Instrument: ICPMS M01	Channe	el 261		***************************************		•••••••••••••••••••••••••••••••••••••••	
File: 060707A1 # 18	Method	6020_					
Acquired: 07/07/2006 12:27:01	MO	1		M	atrix: AIR		
Calibrated: 07/07/2006 11:11:41				U	nits: ug/L		
CASN Analyte Name	M/S Area	Dilution	Sample	%Diff.	MDL	Flac	 വ

		~~~~~~~~~~		~~~~~		, ,		, ,,,,,	· • •
7440-41-7	Beryllium	9	6	0.01826	0.00711	157	0.0070	NC	M
7440-82-2	Vanadium	51	-18169	2.5390	2,6095	2,70	2.4	NO	M
7440-47-3	Chromium	52	33581	0.42453	0.89930	38.4	8.6	NO	10
7439-96-5	Manganese	55	46147	12.872	12.851	0.168	1.8	NO	\(\text{\tin}\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\tin}}\tint{\text{\text{\text{\text{\tin}}\tint{\text{\text{\tin}}\tint{\text{\text{\tin}}\tint{\text{\text{\text{\text{\text{\text{\text{\tin}}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tint{\tiint{\text{\texit}\tint{\text{\ti}\tint{\text{\tiin}\tint{\tiint{\text{\tin}}\tint
7440-48-4	Cobalt	59	1056	0.38772	0.38539	0.607	3.1	NC	81
7440-02-0	Nickel	60	981	1,5133	1.5788	4.15	2.9	NC	<u>M</u>
7440-50-8	Copper	65	7720	14.487	14,620	0.906	2.4	NO	M
7440-66-6	Zinc	68	4598	11,854	6.4342	84.2	5.2	NC	8
7440-38-2	Arsenio	75	15303	-1.7554	0.19833	985	1.6	NO	M
7782-49-2	Selenium	82	1085	-0.31312	0.52436	160	1,4 1,4	NC	
7439-98-7	Molyadenum	97	288	0.65180	0.45975	41.8	0.94	NC	<u> </u>
7440-22-4		107	148	0.06087	0.02284	167	0.012	NC	E
7440-43-9	Cadmium	111	27	0.05431	0.04778	13.7	0.045	NC	M
7440-39-3	Barium	135	1978	5,5356	4.9221	12.5	29,0	NO	<u>M</u>
7439-92-1	Lead	208	8697	1.7827	1.8084	1,42	0.28	NC	83
CACIN!	(C)mm &t	4.5/00			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12-104	0.82	140	ů.
CASN	ISTD Name	M/S	Area	Amount					Q
LITHIUM6	Lithium-6	6	510167			~~~~		************	M
7440-56-4	Germanium	72	1082600				,		
7440-74-6	Indium	115	916459						ä
7440-30-4	Thullum	169	648144						
									33

^{*} Analyte not requested for this batch, no MDL

NO : Serial dilution concentration < 100 X MDL ~

(MDL — 4 SD

E: Difference greater than Limit (10%)

Reviewed by: Date:	
Severn Trent Laboratroles	Vansion: 8.02.088

w Page 1 of 1

Version: 6.02.083

IDB Reports

STL SACRAMENTO Metals - Air Toxics - Preparation Log

Date:	28-Jun-06

Analyst: merritin

Matrix: AIR

Fraction: Filter

SOP:

Method: ICPTRACE

LOTIC	3		Volume Received	Volume Removed	Initial Prep Volume	Final Prep Volume	Batch	Prep Factor	
G6F290000	328	H8F17B	2A	NA	NA	NA	100	6180328	1.2
G6F290000	328	H8F17C	2A	NA	NA	NA	100	6180328	1.2
G6F290000	328	H8F17L	2A	NA	NA	NA	100	6180328	1.2
G6F190128	1	H7N1L	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	2	H7N1M	2A	â	0.75	0.75	100	6180328	1,2
G6F190128	3	H7N1N	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	4	H7N1P	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	5	H7N1T	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	6	H7N1W	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	7	H7N10	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	8	H7N11	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	9	H7N14	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	10	H7N16	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	11	H7N17	2A	g	0.75	0.75	100	6180328	1.2
G6F190128	12	H7N19	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	13	H7N2A	2A	9	0.75	0.75	100	6180328	1.2
G6F190128	14	H7N2E	2A	â	0.75	0.75	100	6180328	1,2
G6F190128	15	H7N2F	2A	9	0.75	0.75	100	6180328	1.2
Mbcontrol	1	F1815168	2A	9	0.75	0.75	100	6180328	1.2

For 1" filter: factor = 9 (9/1) For 0.75" filter factor = 12 (9/0.75)

Page 1 of 1 QA-372B milt 02/20/03

STL SACRAMENTO Metals - Air Toxics - Preparation Log

Date:	28-Jul-06

Analyst: merritin

Matrix: AIR

Fraction:

Filter

SOP:

Method: ICPMS

LOTID		Workorder Volume Volume Initial Prej Received Removed Volume				Initial Prep Volume	Final Prep Volume	Batch	Prep Factor
G6F290000	323	H8F1AB	2A	NA	NA	NA	100	6180323	1.2
G6F290000	323	H8F1AC	2A	NA	NA	NA	100	6180323	1.2
G6F290000	323	H8F1AL	2A	NA	NA	NA	100	6180323	1.2
G6F190128	1	H7N1L	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	2	H7N1M	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	3	H7N1N	2A	ð	0.76	0.75	100	6180323	1.2
G6F190128	4	H7N1P	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	5	H7N1T	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	6	H7N1W	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	7	H7N10	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	8	H7N11	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	9	H7N14	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	10	H7N16	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	11	H7N17	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	12	H7N19	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	13	H7N2A	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	14	H7N2E	2A	9	0.75	0.75	100	6180323	1.2
G6F190128	15	H7N2F	2A	9	0.75	0.75	100	6180323	1.2

For 1" filter: factor = 9 (9/1) For 0.75" filter factor = 12 (9/0.75) Page 1 of 1 QA-372B mlt 02/20/03

STL Sacramento Mercury Sample Preparation Log

STL Lot Number	WO#	рН	Matrix	Wt/Vo	Final Vo	l. Che	mist:	merrittn	Date:	กร	/30/06
0	Std1Rep1	NA	AQUEOUS	5		0 SOP#: SAC-MT-0005			<u>``</u>		
0.2	Std2Rep1	NA	AQUEOUS	5	0 5	OAut	oclave	: Start Time:	}	End:	11:0
0.5	Std3Rep1	NA	AQUEOUS	5	1	0 Bala	~~~~~		}	rated:	NA NA
11	Std4Rep1	NA	AQUEOUS	5	5	OSTA	NDAR	~~~~	1		***************************************
5	Std5Rep1	NA	AQUEOUS	5	5	0 Initia	ıl Calil	oration Standa	ard (ICV	}:	·····
10	Std6Rep1	NA	AQUEOUS	5(*	0 Lot#:				Conc:	Innob
ICV	ICV	NA	AQUEOUS	50	}			n Stds./CCV/N	iatrix Sr	~~~~~~~	
ICB	ICB	NA	AQUEOUS	58		0 Lot#:			3	Conc:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
G6F300000-490	H8KDNB		AQUEOUS	0.79		~ ~		SOIL (0.6g/50n		wor.w.1	
G6F300000-490	H8KDNC		AQUEOUS	0.75	5	0		Curve/QC (ppb	············	pike Vo	li i rma
G6F300000-490	H8KDNL		AQUEOUS	0.75	5(0.0	<u></u>	0.0 ut	
G6F190128-1	H7N1L		Filtr	0.75	5(2	~	100 ul	·····
G6F190128-2	H7N1M		Filtr	0.75	50			.5	***************************************	250 ul	***************************************
G6F190128-3	H7N1N		Filtr	0.75	5()	~~~~	.0	·	0.5 ml	***************************************
G6F190128-4	H7N1P		Filtr	0.75	50)	~~~~~	.0	***************************************	2.5 ml	***************************************
G6F190128-5	H7N1T		Filtr	0.75	· †	~ {~		0.0	······	5.0 ml	·····
G6F190128-6	H7N1W		Filtr	0.75	50	>	~~~~~~~	CV/5.0	***************************************	2.5 ml	*
G6F190128-7	H7N10		Filtr	0.75	50)	~~~ } ~-	CS/1.0		<u>6.0 mi</u> '0.5 mi	
G6F190128-8	H7N11		Filtr	0.75		-}	······	S/SD/3.0		<u>5.5 m</u> 1.5 ml	······
G6F190128-9	H7N14		Filtr	0.75	<u> </u>	-∳~~~~		V/2.0	***************************************	1.0 ml	
G6F190128-10	H7N16		Filtr	0.75	50	·{······		~ V 1 A			
G6F190128-11	47N17		Filtr	0.75	······································			ATER (30/30r	ns 011		······································
G6F190128-12	47N19		Filtr	0.75	}	·}		TLC (3/30 ml)			
G6F190128-13	17N2A		Filtr	0.75	50		3	urve/QC (ppb)		ike Volu	~~~~
36F190128-14	17N2E		Filtr	0.75	50		0.		******	0.0 ul	
36F190128-15	17N2F		Filte	0.75	50		0.:	2		60 ul	
CCA	CCA	/	AQUEOUS	50	50		0.	5	~~~~	50 ul	~~~
CCB C	CB	/	AQUEOUS	50	50		1,1)		00 ul	
							5.0	3		.5 ml	~
							10	.0	***************************************	.0 ml	<u>-</u>
	·····						C	CV/5.0		.5 ml	
							LC	S/1.0		300 ul	
							ic	V/2.0	~~~~~	300 ul	
								······································			~~~
							RE	REAGENTS:			
						•	~~~~	103 Lot#: C02	265	***************************************	
					06 30	064	4.5.	SO4 Lot#: C05	***************************************		
						***********		1nO4 Lot# 262	***************************************		

CASE NARRATIVE

STL SACRAMENTO PROJECT NUMBER G6F190128

AIR, TSP

The final weight for sample 15 was less than the initial weight so this result was reported as 'ND'.

There were no other anomalies associated with this project.

Sample Summary G6F190128

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corresivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, peroxity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight

BROWN AND CALDWELL

G6F190128

CHAIN OF CUSTODY RECORD

	COC	No.
Event 84		
77.4 ATT (1).46		

A; 3264 Goni Road / Suite 153 Carson City, NV 89706 775-883-4118 / FAX 775-883-5108

☐ 4425 W. Spring Mountain Road / Suite 225 Las Vegas, NV 89102 702-938-4080 / FAX 702-938-4082 © 201 East Washington Street / Spite 500 RA000167

Phoenix, AZ 85004
602-567-4000 / FAX 602-567-4001

PRIVECT NAME: Yerington Air Qby	LABORATORY NAME & ADDRESS: SEVERN TRENT LABS., WEST SACRAMENTO,
PROJECT NUMBER; 121243	AND
SAMPLENS ONTAINER ONTAINER PRESER WATHER COUNTAINER CONTAINER CONT	ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REGIN BEGIN BEG
01 - P-0668 6/19/2:28 1 8x10 Filter NONE A FI	M-10, Gross Alpha/Beta, Th(228,230,232), Ks(226,228), U [34,235,238), Metals(Client List)
02 -P-0669 3:45 1 8x10 Filter NONE A P	M-10, Gross Alpha/Beta, Th(228,238,232), Ru(226,228), U 34,235,238), Metals(Client List)
03 - P-06A,0 4:45 1 8x10 Fiber NONE A P.	M-10, Gross Alpha/Bets, Th(228,230,232), Ra(226,228), U 34,235,238), Metals(Client List)
04 - P-067/ 5:50 1 8x10 Filter NONE A P.	M-10, Gross Alpha/Beta, Th(228,230,232), Ra(226,228), U 34,235,238), Metals(Client List)
05 - P-0672 6:35 1 SX10 Filter NONE A FI	M-10, Gross Alpha/Heta, Th(228,230,232), Ra(226,228), U 34,235,238), Motals (Client List)
1 F 1/6/12 1 1 F 1/0 1/1 1 1 1 2	M-10, Gross Alpha/Beta, Tu(228,230,232), Ra(326,228), U 34,235,238), Metals(Client List)
07 -1-0674 V 2:35 V 1 8x16 Filter NONE A PI	M-10, Gross Alpha/Beta, Th(228,230,232), Re(226,228), U 34,235,238), Metals(Client List)
08	
09	
10	~~~
PECHANIST OF THE PROPERTY OF T	OGMMENTS (see note on back): DATE TIME
<u> </u>	
RECORD RETURNED BY: DATE TIME	
COURIER: 494/ ISTRIBUTION: WHITE - PROJECT FILE • CANARY - LAS RECEIPT • PINK - DATA MANAGEMENT • GOLDENRO	2134 6778 OV

BROWN AND CALDWELL

G6F190128

CHAIN OF CUSTODY RECORD

COC	No
-----	----

3264 Goni Road / Suite 153 Carson City, NV 89706 775-883-4118 / FAX 775-883-5108

☐ 4425 W. Spring Mountain Road / Suite 225 Las Vegas, NV 89102 702-938-4080 / FAX 702-938-4082 Event 84

201 East Washington Street / Suite YER A000168

Phoenix, AZ 85004
602-567-4000 / FAX 602-567-4001

<u> </u>	OJECT NUMBER: 12124		***************************************				~~~~		LABORATORY NAME & ACCRESS: SEVERN TRENT LABS., WI	STSACKA	MENTO,	
LINE NO.	Sample - 1.D.	COLL DATE	ECTION TO	SAMPLER'S IMMALS	NUMBER OF CONTAINERS	CONTAINER SIZE AND TYPE	PRESER. VATIVE	MATRIX	ANALYSES REQUESTED	SAMPLING SAMPLING METHOD	DEPTH (FT.) BEGIN END	S READING (ppm)
01	- 006494	1/7/1	0.49	は	1	8x10 Filter	NONE	A	3P, Gross AlphwBets, Th(228,230,232), Ra(226,228), U	/ ~:	~~~	2
02	-000495		0.49		3	8x10 Fiker	NONE	A	3F, Gross Alpha/Beta, Th(228,230,232), Ra(226,228), U 34,235,238), Metais(Client List)			
03	-006496		028		1	8x10 Fiber	NONE	A	SP, Gross Alpha/Beta, Th(228,230,232), Ra(226,228), U 34,235,238), Metals(Client List)		~~~~	
04	-000497 -		0.38		1	8x10 Filter	NONE	А	EP, Gross Alpha/Beta, Th(228,230,232), Re(226,228), U 34,235,238), Metals(Client List)		~~~~	
05	-000498		0.36		ĭ	8x10 Filter	NONE	A	SP, Gross Alphe/Beta, Th(228,230,232), Re(225,228), U 34,235,238), Metals(Client List)	4/1		
06	-100499		0.37		1	8x10 Pilter	none	Α	SP, Gross Alpha/Beta, Th(328,230,232), Ra(226,228), U 7. 34,235,238), Metals(Client List)	10	~~~	
07	000500		1.33		1	8x10 Pilter	NONE	A	IP, Gross Alpha/Beta, Th(228,230,232), Ru(226,228), U 34,235,238), Metals(Client List)	7		
08	-02050/	V	0,24	Y	Ì	8x10 Filter	NONE	A	IP. Gross Alpha/Beta, Th(228,230,232), Ra(226,228), U 34,235,238), Metals(Client List)	7	~	
09	,	<i>'</i>	,	,			•)*************************************
10												
GCA THE	HELETED & RELETED BY	WYL.		6161	E.	COOLER		~~~~~~	COMMENTS (see note on b	xok);	L	~~~
••••••	Chark			GAd	0 24:	HEUNOU	(SHEU BY)	••••	DATE TIME		***************************************	
				*****	<u> </u>		······································	•••••		<i>~</i>		
REC	DORD RETURNED BY:	·		DATE	YIM	E	*******	~~~~~				
	JRIER J J SUTION: WHITE - PROJECT	<u>Z</u>	TANADY . I A	2 8862131		1	NUMBER	3.	29346778	<i>W</i>	·····	

LOT RECEIPT CHECKLIST STL Sacramento

	1	a	,			
CLIENT	Orewn F ()	Adver	//PM_	LOG #_	3950	<u>,6</u>
CLIENT	" GOF 190)28	QUOTE# 6	2684 LOCA	ATION AC	
					Initials	Date
DATE RECEIVED	6/14/067	ME RECEIVED	0200			4/19/00
DELIVERED BY	FEDEX AIRBORNE UPS STL COURIER OTHER	☐ BAX GLOB	TATE D		**************************************	· company of the second
CUSTODY SEAL STAT	rus 🗌 intact	☐ BROKEN	☑ N/A			
CUSTODY SEAL #(S)	***************************************					
SHIPPPING CONTAIN	ER(S) STL	[ZÍ CLIENT	□ N/A			Shirana
TEMPERTURE RECOR	D (IN °C) IR	1 3	OTHER A	14		
COC #(S)	······································	······································				
TEMPERATURE BLAN		Corn	ected:	! 		
SAMPLE TEMPERAT	* {					der.
Observed: QUAL		ge: Co	rrected Avega	age:		rocciaga
COLLECTOR'S NAME:	, □ Ver	ified from CO	C INC	ot on COC		
pH MEASURED	☐ YES	□ AN	OMALY	TZ N/A		
LABELED BY	***************************************					
LABELS CHECKED BY PEER REVIEW	/vv.t/vv.t/vv.t/vv.t/vv.t/vv.t/vv.t/vv.		*************			
SHORT HOLD TEST N	OTIFICATION		SAMPLE RECE	EIVING/		***************************************
			WETCHEM	ZWA		
			VOA-ENCORES	S 🛮 N/A		
☐ METALS NOTIFIED	OF FILTER/PRESERV	e via verbal :	& EMAIL	NA		
COMPLETE SHIPM APPROPRIATE TEN	ENT RECEIVED IN GO MPERATURES, CONTA	OD CONDITION	I WITH RVATIVES	□ N/A		
Clouseau	☐ TEMPERATU	JRE EXCEEDED	(2 °C – 6 °C)*1	[]/N/A	Manager was a series of the se	
☐ WET ICE				O AGENTS USED	У Прі	V NOTIFIED
votes:						

^{*1} Acceptable temperature range for State of Wisconsin samples is ≤4°C.

GBF_EAVEQNO SPACES BLANK. USE "N/A" IF NOT APPLICABLES ANTIQUE MANUSCRIPTION OF ASSOCIATION SPACES BLANK. USE "N/A" IF NOT APPLICABLES ANTIQUE MANUSCRIPTION OF ASSOCIATION OF ASSOCIATION